【题目】已知函数 .
(1)若在 处导数相等,证明: ;
(2)若对于任意 ,直线 与曲线都有唯一公共点,求实数的取值范围.
【题目】已知三棱锥P-ABC的平面展开图中,四边形ABCD为边长等于的正方形,△ABE和△BCF均为正三角形,在三棱锥P-ABC中:
(1)证明:平面PAC⊥平面ABC;
(2)若点M为棱PA上一点且,求二面角P-BC-M的余弦值.
【题目】2018年全国数学奥赛试行改革:在高二一年中举行5次全区竞赛,学生如果其中2次成绩达全区前20名即可进入省队培训,不用参加其余的竞赛,而每个学生最多也只能参加5次竞赛.规定:若前4次竞赛成绩都没有达全区前20名,则第5次不能参加竞赛.假设某学生每次成绩达全区前20名的概率都是,每次竞赛成绩达全区前20名与否互相独立.
(1)求该学生进入省队的概率.
(2)如果该学生进入省队或参加完5次竞赛就结束,记该学生参加竞赛的次数为,求的分布列及的数学期望.
【题目】我们知道,目前最常见的骰子是六面骰,它是一颗正立方体,上面分别有一到六个洞(或数字),其相对两面之数字和必为七.显然,掷一次六面骰,只能产生六个数之一(正上面).现欲要求你设计一个“十进制骰”,使其掷一次能产生0~9这十个数之一,而且每个数字产生的可能性一样.请问:你能设计出这样的骰子吗?若能,请写出你的设计方案;若不能,写出理由.
【题目】已知m∈{11,13,15,17,19},n∈{2000,2001,…,2019},则mn的个位数是1的概率为____________ .
【题目】如图,在四棱锥中,底面为梯形,,若棱,,两两垂直,长度分别为1,2,2,且向量与夹角的余弦值为.
(1)求的长度;
(2)求直线与平面所成角的正弦值.
【题目】在直角坐标系中,直线的参数方程为(t为参数),以直角坐标系的点为极点,为极轴,且长度单位相同,建立极坐标系,得曲线的极坐标方程为.
(1)求直线的倾斜角;
(2)若直线与曲线交于,两点,求的长度.
【题目】已知数列满足,,.
(1)若.
①求数列的通项公式;
②证明:对, .
(2)若,且对,有,证明:.
【题目】已知函数,.
(1)求曲线在处的切线方程;
(2)对任意,恒成立,求实数的取值范围;
(3)当时,试求方程的根的个数.
【题目】已知椭圆的右焦点的坐标为,点为椭圆上一点.
(1)求椭圆的方程;
(2)过椭圆的右焦点作斜率为的直线交椭圆于,两点,且,求的面积.