【题目】从某食品厂生产的面包中抽取
个,测量这些面包的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组 |
|
|
|
|
|
频数 |
|
|
|
|
|
![]()
(1)在相应位置上作出这些数据的频率分布直方图;
(2)估计这种面包质量指标值的平均数
(同一组中的数据用该组区间的中点值作代表);
(3)根据以上抽样调查数据,能否认为该食品厂生产的这种面包符合“质量指标值不低于
的面包至少要占全部面包
的规定?”
【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:
维修次数 | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 20 | 30 | 30 | 10 |
记x表示1台机器在三年使用期内的维修次数,y表示1台机器在维修上所需的费用(单位:元),
表示购机的同时购买的维修服务次数.
(1)若
=10,求y与x的函数解析式;
(2)若要求“维修次数不大于
”的频率不小于0.8,求n的最小值;
(3)假设这100台机器在购机的同时每台都购买10次维修服务,或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买10次还是11次维修服务?
【题目】某幼儿园雏鹰班的生活老师统计2018年上半年每个月的20日的昼夜温差
,
和患感冒的小朋友人数(
/人)的数据如下:
温差 |
|
|
|
|
|
|
患感冒人数 | 8 | 11 | 14 | 20 | 23 | 26 |
其中
,
,
.
(Ⅰ)请用相关系数加以说明是否可用线性回归模型拟合
与
的关系;
(Ⅱ)建立
关于
的回归方程(精确到
),预测当昼夜温差升高
时患感冒的小朋友的人数会有什么变化?(人数精确到整数)
参考数据:
.参考公式:相关系数:
,回归直线方程是
,
,