【题目】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0, ](1)求C的参数方程;(2)设点D在半圆C上,半圆C在D处的切线与直线l:y= x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.
【题目】已知在直角坐标系 xOy 中,圆锥曲线 C 的参数方程为 ( 为参数),定点 , F1,F2 是圆锥曲线 C 的左,右焦点.(1)以原点为极点、 x 轴正半轴为极轴建立极坐标系,求经过点 F1 且平行于直线AF2 的直线 l 的极坐标方程;(2)在(1)的条件下,设直线 l 与圆锥曲线 C 交于 E,F 两点,求弦 EF 的长.
【题目】已知函数f(x)=|x﹣1|+|x﹣a|(1)当a=2时,解不等式f(x)≥4.(2)若不等式f(x)≥2a恒成立,求实数a的取值范围.
【题目】设函数f(x)=|x+ |+|x﹣a|(a>0).(1)证明:f(x)≥2;(2)若f(3)<5,求a的取值范围.
【题目】已知函数f(x)=|x﹣a|,其中a>1(1)当a=2时,求不等式f(x)≥4﹣|x﹣4|的解集;(2)已知关于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.
【题目】设函数f(x)=|x﹣1|+|x﹣2|(1)求不等式f(x)≤3的解集;(2)若不等式||a+b|﹣|a﹣b||≤|a|f(x)(a≠0,a∈R,b∈R)恒成立,求实数x的范围.
【题目】(2015·新课标I卷)选修4-5:不等式选讲 已知函数f(x)=|x+1|-2|x-a|, a>0.(1)当a=1时求不等式f(x)>1的解集;(2)若f(x)图像与x轴围成的三角形面积大于6,求a的取值范围.
【题目】若关于x的不等式|ax﹣2|<3的解集为{x|﹣ <x< },则a= .
【题目】已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|< |x﹣y|.若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为( )A.B.C.D.
【题目】当|a|≤1,|x|≤1时,关于x的不等式|x2﹣ax﹣a2|≤m恒成立,则实数m的取值范围是( )A.[ , +∞)B.[ , +∞)C.[ , +∞)D.[ , +∞)