【题目】在某中学高中某学科竞赛中,该中学100名考生的参赛成绩统计如图所示.
(1)求这100名考生的竞赛平均成绩(同一组中数据用该组区间中点作代表);
(2)记70分以上为优秀,70分及以下为合格,结合频率分布直方图完成下表,并判断是否有99%的把握认为该学科竞赛成绩与性别有关?
合格 | 优秀 | 合计 | |
男生 | 18 | ||
女生 | 25 | ||
合计 | 100 |
附:.
0.050 | 0.010 | 0.005 | |
3.841 | 6.635 | 7.879 |
【题目】某市在对学生的综合素质评价中,将其测评结果分为“优秀、合格、不合格”三个等级,其中不小于80分为“优秀”,小于60分为“不合格”,其它为“合格”. 参考公式:K2= ,其中n=a+b+c+d.
临界值表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
(1)某校高一年级有男生500人,女生400人,为了解性别对该综合素质评价结果的影响,采用分层抽样的方法从高一学生中抽取45名学生的综合素质评价结果,其各个等级的频数统计如下表:
等级 | 优秀 | 合格 | 不合格 |
男生(人) | 15 | x | 5 |
女生(人) | 15 | 3 | y |
根据表中统计的数据填写下面2×2列联表,并判断是否有90%的把握认为“综合素质评价测评结果为优秀与性别有关”?
优秀 | 男生 | 女生 | 总计 |
非优秀 | |||
总计 |
(2)以(1)中抽取的45名学生的综合素质评价等级的频率作为全市各个评价等级发生的概率,且每名学生是否“优秀”相互独立,现从该市高一学生中随机抽取3人. ①求所选3人中恰有2人综合素质评价为“优秀”的概率;
②记X表示这3人中综合素质评价等级为“优秀”的个数,求X的数学期望.