【题目】一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为( )A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣
【题目】下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程,变量x增加一个单位时,y平均增加5个单位;
③线性回归直线必过;
④曲线上的点与该点的坐标之间具有相关关系;
⑤在一个2×2列联表中,由计算得K2=13.079.则其两个变量间有关系的可能性是90%.
其中错误的个数是( )
A. 1 B. 2
C. 3 D. 4
【题目】已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为,为双曲线上一点(不同于,),直线,分别与直线交于,两点.
()求双曲线的方程.
()证明为定值.
【题目】为了解某冷饮店的经营状况,随机记录了该店月的月营业额(单位:万元)与月份的数据,如下表:
(1)求关于的回归直线方程;
(2)若在这样本点中任取两点,求恰有一点在回归直线上的概率.
附:回归直线方程中,
,.
【题目】如图4,四边形为正方形,平面,,于点,,交于点.
(1)证明:平面;
(2)求二面角的余弦值.
【题目】在中,是AB边上的一点,CD=2,的面积为4,则AC的长为
【题目】已知被直线, 分成面积相等的四个部分,且截轴所得线段的长为2.
(1)求的方程;
(2)若存在过点的直线与相交于, 两点,且点恰好是线段的中点,求实数的取值范围.
【题目】在如图所示的五面体中,面为直角梯形, ,平面平面, , 是边长为2的正三角形.
(1)证明: 平面;
【题目】一装有水的直三棱柱容器(厚度忽略不计),上下底面均为边长为5的正三角形,侧棱为10,侧面水平放置,如图所示,点, , , 分别在棱, , , 上,水面恰好过点, , , ,且.
(1)证明: ;
(2)若底面水平放置时,求水面的高.