题目内容
【题目】如图4,四边形为正方形,平面,,于点,,交于点.
(1)证明:平面;
(2)求二面角的余弦值.
【答案】(1)详见解析;(2).
【解析】试题分析:(1)由平面,得到,再由四边形为正方形得到,从而证明平面,从而得到,再结合,即以及直线与平面垂直的判定定理证明平面;(2)先证明、、三条直线两两垂直,然后以点为坐标原点,、、所在直线分别为轴、轴、轴建立空间直角坐标系,利用空间向量法求出二面角的余弦值.
试题解析:(1)平面,
,又,,
平面,
,又,
平面,即平面;
(2)设,则中,,又,
,,由(1)知,
,,
,又,
,,同理,
如图所示,以为原点,建立空间直角坐标系,则,
,,,,
设是平面的法向量,则,又,
所以,令,得,,
由(1)知平面的一个法向量,
设二面角的平面角为,可知为锐角,
,即所求.
【题目】我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.
(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
分组 | 频数 | 频率 |
[50,60) | 2 | 0.04 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | |
[80,90) | ||
[90,100] | 14 | 0.28 |
合计 | 1.00 |
如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.
【题目】随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
天气 | 晴 | 雨 | 阴 | 阴 | 阴 | 雨 | 阴 | 晴 | 晴 | 晴 | 阴 | 晴 | 晴 | 晴 | 晴 |
日期 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
天气 | 晴 | 阴 | 雨 | 阴 | 阴 | 晴 | 阴 | 晴 | 晴 | 晴 | 阴 | 晴 | 晴 | 晴 | 雨 |
(1)在4月份任取一天,估计西安市在该天不下雨的概率;
(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.