【题目】已知集合A={x|x<﹣2或x>0},B={x|( )x≥3} (Ⅰ)求A∪B(Ⅱ)若集合C={x|a<x≤a+1},且A∩C=C,求a的取值范围.
【题目】已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=|x﹣1|,若方程f(x)= 有4个不相等的实根,则实数a的取值范围是( )A.(﹣ ,1)B.( ,1)C.( ,1)D.(﹣1, )
【题目】元代数学家朱世杰所著《四元玉鉴》一书,是中国古代数学的重要著作之一,共分卷首、上卷、中卷、下卷四卷,下卷中《果垛叠藏》第一问是:“今有三角垛果子一所,值钱一贯三百二十文,只云从上一个值钱二文,次下层层每个累贯一文,问底子每面几何?”据此,绘制如图所示程序框图,求得底面每边的果子数n为( ) A.7B.8C.9D.10
【题目】若椭圆 与双曲线 有相同的焦点F1、F2 , P是两曲线的一个交点,则△F1PF2的面积是( )A.4B.2C.1D.
【题目】已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点( ,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.
【题目】矩形ABCD中,AB=2,AD=1,在矩形ABCD的边CD上随机取一点E,记“△AEB的最大边是AB”为事件M,则P(M)等于( )A.2﹣ B. ﹣1C.D.
【题目】已知f(x)=ln(1﹣ )+1,则f(﹣7)+f(﹣5 )+f(﹣3)+f(﹣1)+f(3 )+f( 5)+f(7 )+f( 9)=( )A.0B.4C.8D.16
【题目】如图1所示,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,EF∩AC=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到如图2所示五棱锥P﹣ABFED,且AP= , (1)求证:BD⊥平面POA;(2)求二面角B﹣AP﹣O的正切值.
【题目】下列函数中,是奇函数且在(0,+∞)上单调递减的是( )A.y=x﹣1B.y=( )xC.y=x3D.
【题目】已知数列{an}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{an}的通项公式;(2)设Sn为数列{an}的前n项和,bn= ,求数列{bn}的前n项和Tn .