【题目】已知点m是直线l: x﹣y+3=0与x轴的交点,将直线l绕点m旋转30°,求所得到的直线l′的方程.
【题目】已知等差数列{an}满足:a3=3,a5+a7=12,{an}的前n项和为Sn .(1)求an及Sn;(2)令bn= (n∈N*),求数列{bn}的前n项和Tn .
【题目】已知抛物线(),过其焦点作斜率为1的直线交抛物线于, 两点,且,
(1)求抛物线的方程;
(2)已知动点的圆心在抛物线上,且过点,若动圆与轴交于两点,且,求的最小值.
【题目】已知, .
(1)求在点处的切线;
(2)讨论的单调性;
(3)当, 时,求证: .
【题目】某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本,并称出它们的重量(单位:克),重量值落在内的产品为合格品,否则为不合格品,统计结果如表:
(Ⅰ)求甲流水线样本合格的频率;
(Ⅱ)从乙流水线上重量值落在内的产品中任取2个产品,求这2件产品中恰好只有一件合格的概率.
【题目】从某企业生产的某中产品中抽取100件,测量这些产品的质量指标值.由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1. (1)求这些产品质量指标落在区间[75,85]内的概率;(2)用分层抽样的方法在区间[45,75)内抽取一个容量为6的样本,将该样本看成一个总体,从中任意抽取2件产品,求这2件产品都在区间[45,65)内的概率.
【题目】已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,且椭圆上任意一点到两个焦点的距离之和为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与椭圆相交于两点,求面积的最大值.
【题目】△ABC的内角A、B、C所对的边分别为a,b,c. (Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.
【题目】已知函数.
(Ⅰ)若,求函数的极值;
(Ⅱ)若,,,使得(),求实数的取值范围.
【题目】如图,正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF= ,给出下列结论:(1)AC⊥BE;(2)EF∥平面ABCD;(3)三棱锥A﹣BEF的体积为定值;(4)异面直线AE,BF所成的角为定值.其中错误的结论有( )A.0个B.1 个C.2个D.3个