题目内容
【题目】已知等差数列{an}满足:a3=3,a5+a7=12,{an}的前n项和为Sn .
(1)求an及Sn;
(2)令bn= (n∈N*),求数列{bn}的前n项和Tn .
【答案】
(1)解:设等差数列{an}的公差为d,∵a3=3,a5+a7=12,
∴a1+2d=3,2a1+10d=12,
解得a1=d=1.
∴an=1+(n﹣1)=n,Sn=
(2)解:bn= = ,
∴数列{bn}的前n项和Tn=2 +…+
=2
=
【解析】(1)利用等差数列的通项公式与求和公式即可得出.(2)利用“裂项求和”方法即可得出.
【考点精析】通过灵活运用数列的前n项和和数列的通项公式,掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式即可以解答此题.
【题目】(本小题满分12分) 某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过):
空气质量指数 | ||||||
空气质量等级 | 级优 | 级良 | 级轻度污染 | 级中度污染 | 级重度污染 | 级严重污染 |
该社团将该校区在年天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.
(Ⅰ)请估算年(以天计算)全年空气质量优良的天数(未满一天按一天计算);
(Ⅱ)该校年月、日将作为高考考场,若这两天中某天出现级重度污染,需要净化空气费用元,出现级严重污染,需要净化空气费用元,记这两天净化空气总费用为元,求的分布列及数学期望.
【题目】已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,且椭圆上任意一点到两个焦点的距离之和为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与椭圆相交于两点,求面积的最大值.
【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一个周期内的图象时,列表并填入的部分数据如表:
x | |||||
ωx+φ | 0 | π | 2π | ||
Asin(ωx+φ) | 0 | 2 | 0 | ﹣2 |
(1)请将上表数据补全,并直接写出函数f(x)的解析式;
(2)当x∈[0, ]时,求函数f(x)的值域.