题目内容

【题目】已知等差数列{an}满足:a3=3,a5+a7=12,{an}的前n项和为Sn
(1)求an及Sn
(2)令bn= (n∈N*),求数列{bn}的前n项和Tn

【答案】
(1)解:设等差数列{an}的公差为d,∵a3=3,a5+a7=12,

∴a1+2d=3,2a1+10d=12,

解得a1=d=1.

∴an=1+(n﹣1)=n,Sn=


(2)解:bn= =

∴数列{bn}的前n项和Tn=2 +…+

=2

=


【解析】(1)利用等差数列的通项公式与求和公式即可得出.(2)利用“裂项求和”方法即可得出.
【考点精析】通过灵活运用数列的前n项和和数列的通项公式,掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网