【题目】已知Sn是等差数列{an}的前n项和,且S8>S9>S7 , 给出下列四个命题: ①d<0; ②S16<0; ③数列{Sn}中的最大项为S15;④|a8|>|a9|.其中正确命题有 .
【题目】设集合.如果对于的每一个含有个元素的子集, 中必有4个元素的和等于,称正整数为集合的一个“相关数”.
(Ⅰ)当时,判断5和6是否为集合的“相关数”,说明理由;
(Ⅱ)若为集合的“相关数”,证明: ;
(Ⅲ)给定正整数.求集合的“相关数” 的最小值.
【题目】已知抛物线y2=2px(p>0)的焦点为F,A(x1,y1),B(x2,y2)是过F的直线与抛物线的两个交点,求证:
(1)y1y2=-p2,;(2)为定值;
(3)以AB为直径的圆与抛物线的准线相切.
【题目】一元二次不等式x2+ax+b>0的解集为x∈(﹣∞,﹣3)∪(1,+∞),则一元一次不等式ax+b<0的解集为 .
【题目】如图,四棱锥中,底面为直角梯形, ,平面平面, 分别为的中点, 为的中点,过作平面分别与交于点.
(Ⅰ)当为中点时,求证:平面平面;
(Ⅱ)当时,求三棱锥的体积.
【题目】已知F1,F2分别为双曲线的左、右焦点,P为双曲线右支上的任意一点,若的最小值为8a,则双曲线的离心率e的取值范围是( )
A. (1,+∞) B. (1,2] C. (1,] D. (1,3]
【题目】已知集合A={x|x2≥1}, ,则A∩(RB)=( )A.(2,+∞)B.(﹣∞,﹣1]∪(2,+∞)C.(﹣∞,﹣1)∪(2,+∞)D.[﹣1,0]∪[2,+∞)
【题目】如图,在三棱柱ABC﹣A1B1C1中,侧面ABB1A1 , ACC1A1均为正方形,AB=AC=1,∠BAC=90,点D是棱B1C1的中点. (1)求证:AB1∥平面A1DC;(2)求证:A1D⊥平面BB1C1C.
【题目】经国务院批复同意,重庆成功入围国家中心城市,某校学生社团针对“重庆的发展环境”对20名学生进行问卷调查打分(满分100分),得到如图所示茎叶图:
(Ⅰ)计算女生打分的平均分,并用茎叶图的数字特征评价男生、女生打分谁更分散;
(Ⅱ)如图按照打分区间、、、、绘制的直方图中,求最高矩形的高;
(Ⅲ)从打分在70分以下(不含70分)的同学中抽取3人,求有女生被抽中的概率.
【题目】已知数列的前n项和, 是等差数列,且.
(Ⅰ)求数列的通项公式;
(Ⅱ)令.求数列的前n项和.