13.已知F1,F2是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,|F1F2|=4,点A在双曲线的右支上,线段AF1与双曲线左支相交于点B,△F2AB的内切圆与边BF2相切于点E.若|AF2|=2|BF1|,|BE|=2,则双曲线C的离心率为( )
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
10.某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
(1)假设n=2,求第一大块地都种植品种甲的概率;
(2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
| 品种甲 | 403 | 397 | 390 | 404 | 388 | 400 | 412 | 406 |
| 品种乙 | 419 | 403 | 412 | 418 | 408 | 423 | 400 | 413 |
(2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
9.设曲线y=3x-ln(x+a)在点(0,0)处的切线方程为y=2x,则a=( )
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
8.已知动点A在圆x2+y2=1上移动,点B(3,0),则AB的中点的轨迹方程是( )
0 250720 250728 250734 250738 250744 250746 250750 250756 250758 250764 250770 250774 250776 250780 250786 250788 250794 250798 250800 250804 250806 250810 250812 250814 250815 250816 250818 250819 250820 250822 250824 250828 250830 250834 250836 250840 250846 250848 250854 250858 250860 250864 250870 250876 250878 250884 250888 250890 250896 250900 250906 250914 266669
| A. | (x+3)2+y2=4 | B. | (x-3)2+y2=1 | C. | (2x-3)2+4y2=1 | D. | (x+$\frac{3}{2}$)2+y2=$\frac{1}{2}$ |