10.某媒体对“男女同龄退休”这一公众关注的问题进行了民意调査,如表是在某单位得到的数据(人数):
(Ⅰ)判断是否有99.5%以上的把握认为赞同“男女同龄退休”与性别有关?
(Ⅱ)用分层抽样的方法从赞同“男女同龄退休”的人员中随机抽取6人作进一步调查分析,将这6人作为一个样本,从中任选出2人,求恰有1名男士和1名女士的概率.
下面的临界值表供参考:
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
| 赞同 | 反对 | 合计 | |
| 男 | 10 | 20 | 30 |
| 女 | 20 | 5 | 25 |
| 合计 | 30 | 25 | 55 |
(Ⅱ)用分层抽样的方法从赞同“男女同龄退休”的人员中随机抽取6人作进一步调查分析,将这6人作为一个样本,从中任选出2人,求恰有1名男士和1名女士的概率.
下面的临界值表供参考:
| P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.760 | 3.841 | 5.024 | 60635 | 7.879 | 10.828 |
7.已知两条不重合的直线m、n,两个不重合的平面α、β,有下列四个命题:
①若m∥n,m?α,则n∥α;
②若n⊥α,m⊥β且m∥n则α∥β;
③若m?α,n?α,m∥β,n∥β,则α∥β;
④若α⊥β,α∩β=m,且n?β,n⊥m,则n⊥α.
其中正确命题为( )
①若m∥n,m?α,则n∥α;
②若n⊥α,m⊥β且m∥n则α∥β;
③若m?α,n?α,m∥β,n∥β,则α∥β;
④若α⊥β,α∩β=m,且n?β,n⊥m,则n⊥α.
其中正确命题为( )
| A. | ①② | B. | ②④ | C. | ③④ | D. | ②③ |
6.
某几何体的三视图如图所示,正视图是面积为$\frac{9}{2}$π的半圆,俯视图是正三角形,此几何体的体积为( )
| A. | $\frac{9\sqrt{3}}{2}$π | B. | 9$\sqrt{3}$π | C. | $\frac{9\sqrt{3}}{4}$π | D. | 3$\sqrt{3}$π |
3.已知定义域为R的奇函数y=f(x)的导函数y=f′(x).当x≠0时,f′(x)+$\frac{f(x)}{x}$>0.若a=$\frac{1}{2}$f($\frac{1}{2}$),b=-2f(-2),c=(ln$\frac{1}{2}$)f(ln$\frac{1}{2}$),则a、b、c的大小关系是( )
| A. | a<b<C | B. | b<c<a | C. | c<a<b | D. | a<c<b |
2.对于使f(x)≥N成立的所有常数N中,我们把N的最大值叫作f(x)的下确界.若a,b∈(0,+∞),且a+b=2,则$\frac{1}{3a}$+$\frac{3}{b}$的下确界为( )
0 245900 245908 245914 245918 245924 245926 245930 245936 245938 245944 245950 245954 245956 245960 245966 245968 245974 245978 245980 245984 245986 245990 245992 245994 245995 245996 245998 245999 246000 246002 246004 246008 246010 246014 246016 246020 246026 246028 246034 246038 246040 246044 246050 246056 246058 246064 246068 246070 246076 246080 246086 246094 266669
| A. | $\frac{16}{3}$ | B. | $\frac{8}{3}$ | C. | $\frac{4}{3}$ | D. | $\frac{2}{3}$ |