5.函数y=$\frac{1}{2}$x2-ln x的单调递减区间为( )
| A. | (0,1) | B. | (0,+∞) | C. | (1,+∞) | D. | (-∞,-1)和 (0,1) |
2.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x对年销售额(单位:万元)的影响,对近6年的年宣传费xi和年销售额yi(i=1,2,…6)数据进行了研究,发现宣传费xi和年销售额yi具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.
(Ⅰ)根据表中数据,建立y关于x的回归方程;
(Ⅱ)利用)(Ⅰ)中的回归方程预测该公司如果对该产品的宣传费支出为10万元时销售额时n万元,该公司计划从10名中层管理人员中挑选出3人担任总裁助理,10名中层管理人员中有2名是技术部骨干,记所挑选3人中技术部骨干人数为ξ,且随机变量η=$\frac{n}{40}$+ξ,求η的概率分布列与数学期望.
附:回归直线的倾斜率截距的最小二乘估计公式分别为:
$\widehat{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i-1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$.
| $\overline{x}$ | $\overline{y}$ | $\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}$ | $\sum_{i=1}^{6}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$ |
| 6 | 500 | 20 | 1300 |
(Ⅱ)利用)(Ⅰ)中的回归方程预测该公司如果对该产品的宣传费支出为10万元时销售额时n万元,该公司计划从10名中层管理人员中挑选出3人担任总裁助理,10名中层管理人员中有2名是技术部骨干,记所挑选3人中技术部骨干人数为ξ,且随机变量η=$\frac{n}{40}$+ξ,求η的概率分布列与数学期望.
附:回归直线的倾斜率截距的最小二乘估计公式分别为:
$\widehat{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i-1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$.
17.设函数f(x)是(-∞,0)的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>0,则不等式(x+2016)2f(x+2016)-9f(-3)>0的解集为( )
0 241188 241196 241202 241206 241212 241214 241218 241224 241226 241232 241238 241242 241244 241248 241254 241256 241262 241266 241268 241272 241274 241278 241280 241282 241283 241284 241286 241287 241288 241290 241292 241296 241298 241302 241304 241308 241314 241316 241322 241326 241328 241332 241338 241344 241346 241352 241356 241358 241364 241368 241374 241382 266669
| A. | (-∞,-2013) | B. | (-2013,0) | C. | (-∞,-2019) | D. | (-2019,0) |