题目内容
3.已知函数f(x)=xlnx,(Ⅰ)求曲线y=f(x)在点(e,f(e))处的切线方程;
(Ⅱ)若关于x的不等式f(x)-$\frac{1}{2}$≤$\frac{3}{2}{x}^{2}$+ax在(0,+∞)上恒成立,求实数a的取值范围.
分析 (Ⅰ)求出原函数的导函数f′(x)=lnx+1,可得f′(e)=2,又f(e)=e,利用直线方程的点斜式可得曲线f(x)在点(e,f(e))处的切线方程;
(Ⅱ)把f(x)-$\frac{1}{2}$≤$\frac{3}{2}{x}^{2}$+ax在(0,+∞)上恒成立转化为2a≥$\frac{2xlnx-3{x}^{2}-1}{x}$在(0,+∞)上恒成立,令g(x)=$\frac{2xlnx-3{x}^{2}-1}{x}$,利用导数求其最大值得答案.
解答 解:(Ⅰ)依题意,f′(x)=lnx+1,故f′(e)=2,而f(e)=e,
∴曲线y=f(x)在点(e,f(e))处的切线方程为y-e=2(x-e),
即y=2x-e;
(Ⅱ)关于x的不等式f(x)-$\frac{1}{2}$≤$\frac{3}{2}{x}^{2}$+ax在(0,+∞)上恒成立,
即$xlnx-\frac{1}{2}≤\frac{3}{2}{x}^{2}+ax$在(0,+∞)上恒成立,
也就是2a≥$\frac{2xlnx-3{x}^{2}-1}{x}$在(0,+∞)上恒成立,
令g(x)=$\frac{2xlnx-3{x}^{2}-1}{x}$,则g′(x)=$\frac{-(3x+1)(x-1)}{{x}^{2}}$.
当x∈(0,1)时,g′(x)>0,g(x)单调递增,
当x∈(1,+∞)时,g′(x)<0,g(x)单调递减.
∴g(x)max=g(1)=-4,
故2a≥-4,可得a≥-2.
故实数a的取值范围为[-2,+∞).
点评 本题考查利用导数研究过曲线上某点处的切线方程,考查了利用分离参数法求解恒成立问题,属于中档题.
练习册系列答案
相关题目
3.已知等差数列{an}的前n项和为Sn,公差为1,若S6=3S3,则a9=( )
| A. | 11 | B. | $\frac{19}{2}$ | C. | 9 | D. | 10 |
11.集合A中的元素个数用符号card(A)表示,设A={x|(lnx)2+mx2lnx>0},N为自然数集,若card(A∩N)=3,则实数m的取值范围是( )
| A. | (-$\frac{ln2}{4}$,-$\frac{ln2}{8}$] | B. | (-$\frac{ln2}{8}$,-$\frac{ln5}{30}$] | C. | (-$\frac{ln2}{8}$,-$\frac{ln5}{25}$] | D. | (-$\frac{ln3}{9}$,-$\frac{ln2}{8}$] |
12.已知函数f(x)是周期为2的偶函数,当0<x<1时,f(x)=log0.5x,则( )
| A. | f($\frac{7}{5}$)<f($\frac{4}{3}$)<f(-$\frac{1}{2}$) | B. | f($\frac{4}{3}$)<f(-$\frac{1}{2}$)<f($\frac{7}{5}$) | C. | f($\frac{4}{3}$)<f($\frac{7}{5}$)<f(-$\frac{1}{2}$) | D. | f(-$\frac{1}{2}$)<f($\frac{4}{3}$)<f($\frac{7}{5}$) |
13.从1,2,3,4,5中任取2个不同的数字,设“取到的2个数字之和为偶数”为事件A,“取到的2个数字均为奇数”为事件B,则P(B|A)=( )
| A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{2}{5}$ | D. | $\frac{3}{4}$ |