9.在一次考试中,班主任随机抽取本班5名学生数学、物理成绩如表:
根据表中数据,求y关于x的线性回归方程;若本班某位学生的数学成绩为81分时,预测该同学的物理成绩为多少分?
附:线性回归方程:$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| 学生序号i | 1 | 2 | 3 | 4 | 5 |
| 数学xi(分) | 89 | 91 | 93 | 95 | 97 |
| 物理yi(分) | 87 | 89 | 89 | 92 | 93 |
附:线性回归方程:$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
7.某班从甲、乙等7名学生中选4人参加校运会接力比赛,要求甲、乙两人至少有一人参赛,若甲、乙都参赛,则他们不能跑相邻两棒,那么安排接力顺序的不同方式有( )
| A. | 360种 | B. | 520种 | C. | 600种 | D. | 720种 |
3.定义在(0,$\frac{π}{2}$)上的函数f(x),f′(x)是它的导函数,且恒有f′(x)<-f(x)tanx成立,则( )
| A. | $\sqrt{3}$f($\frac{π}{3}$)>f($\frac{π}{6}$) | B. | $\sqrt{3}$f($\frac{π}{3}$)<f($\frac{π}{6}$) | C. | $\frac{\sqrt{2}}{2}$f(1)>cos1f($\frac{π}{4}$) | D. | $\sqrt{2}$f($\frac{π}{6}$)<$\sqrt{3}$f($\frac{π}{4}$) |
2.如果某年年份的各位数字之和为8,我们称该年为“吉祥年”.例如,今年2015年的各数字之和为8,所以今年恰为“吉祥年”,那么从2000年到3999年中“吉祥年“共有( )个.
0 241170 241178 241184 241188 241194 241196 241200 241206 241208 241214 241220 241224 241226 241230 241236 241238 241244 241248 241250 241254 241256 241260 241262 241264 241265 241266 241268 241269 241270 241272 241274 241278 241280 241284 241286 241290 241296 241298 241304 241308 241310 241314 241320 241326 241328 241334 241338 241340 241346 241350 241356 241364 266669
| A. | 42 | B. | 43 | C. | 49 | D. | 45 |