4.第五届北京农业嘉年华于2017年3月11日至5月7日在昌平区兴寿镇草莓博览园中举办,设置“三馆两园一带一谷一线”八大功能板块.现安排六名志愿者去其中的“三馆两园”参加志愿者服务工作,若每个“馆”与“园”都至少安排一人,则不同的安排方法种数为( )
| A. | C${\;}_{6}^{2}$A${\;}_{5}^{5}$ | B. | 5C${\;}_{6}^{1}$A${\;}_{5}^{5}$ | C. | 5A${\;}_{5}^{5}$ | D. | C${\;}_{6}^{1}$A${\;}_{5}^{5}$ |
3.“x=-3”是“x2+3x=0”的( )
| A. | 充分必要条件 | B. | 必要不充分条件 | ||
| C. | 充分不必要条件 | D. | 既不充分也不必要条件 |
2.复数z=(i-$\frac{1}{i}$)5,则复数z的共轭复数的虚部为( )
| A. | 32i | B. | -32i | C. | 32 | D. | -32 |
1.
某商店为了更好地规划某种商品进货的量,该商店从某一年的销售数据中,随机抽取了8组数据作为研究对象,如图所示(x(吨)为该商品进货量,y(天)为销售天数);
(Ⅰ)根据上表数据在下列网格中绘制散点图;
(Ⅱ)根据上表提供的数据,求出y关于x的线性回归方程 $\widehat{y}$=$\widehat{b}x+\widehat{a}$;
(Ⅲ)根据(Ⅱ)中的计算结果,若该商店准备一次性进货该商品24吨,预测需要销售天数.
参考公式和数据:$\widehat{b}=\frac{{∑}_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{{∑}_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$.
$\sum_{i=1}^{8}{x}_{i}=48$,$\sum_{i=1}^{8}{y}_{i}=32$,$\sum_{i=1}^{8}{{x}_{i}}^{2}=356$,$\sum_{i=1}^{8}{x}_{i}{y}_{i}=241$.
0 241055 241063 241069 241073 241079 241081 241085 241091 241093 241099 241105 241109 241111 241115 241121 241123 241129 241133 241135 241139 241141 241145 241147 241149 241150 241151 241153 241154 241155 241157 241159 241163 241165 241169 241171 241175 241181 241183 241189 241193 241195 241199 241205 241211 241213 241219 241223 241225 241231 241235 241241 241249 266669
| x | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 |
| y | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅱ)根据上表提供的数据,求出y关于x的线性回归方程 $\widehat{y}$=$\widehat{b}x+\widehat{a}$;
(Ⅲ)根据(Ⅱ)中的计算结果,若该商店准备一次性进货该商品24吨,预测需要销售天数.
参考公式和数据:$\widehat{b}=\frac{{∑}_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{{∑}_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$.
$\sum_{i=1}^{8}{x}_{i}=48$,$\sum_{i=1}^{8}{y}_{i}=32$,$\sum_{i=1}^{8}{{x}_{i}}^{2}=356$,$\sum_{i=1}^{8}{x}_{i}{y}_{i}=241$.