15.为了监控某种零件的一条生产线的生产过程,检验员每隔30min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:
抽取次序12345678
零件尺寸9.9510.129.969.9610.019.929.9810.04
抽取次序910111213141516
零件尺寸10.269.9110.1310.029.2210.0410.059.95
经计算得 $\overline{x}$=$\frac{1}{16}$$\sum_{i=1}^{16}$xi=9.97,s=$\sqrt{\frac{1}{16}\sum_{i=1}^{16}({x}_{i}-\overline{x})^{2}}$=$\sqrt{\frac{1}{16}(\sum_{i=1}^{16}{{x}_{i}}^{2}-16{\overline{x}}^{2})$≈0.212,$\sqrt{\sum_{i=1}^{16}(i-8.5)^{2}}$≈18.439,$\sum_{i=1}^{16}$(xi-$\overline{x}$)(i-8.5)=-2.78,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
(1)求(xi,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在($\overline{x}$-3s,$\overline{x}$+3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅱ)在($\overline{x}$-3s,$\overline{x}$+3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
附:样本(xi,yi)(i=1,2,…,n)的相关系数r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}\sqrt{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,$\sqrt{0.008}$≈0.09.
 0  239620  239628  239634  239638  239644  239646  239650  239656  239658  239664  239670  239674  239676  239680  239686  239688  239694  239698  239700  239704  239706  239710  239712  239714  239715  239716  239718  239719  239720  239722  239724  239728  239730  239734  239736  239740  239746  239748  239754  239758  239760  239764  239770  239776  239778  239784  239788  239790  239796  239800  239806  239814  266669 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网