学校达标运动会后,为了解学生的体质情况,从中抽取了部分学生的成绩,得到一个容量为n的样本,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出了如图的频率分布直方图,已知[50,60)与[90,100]两组的频数分别为24与6.
(1)求n及频率分布直方图中的x,y的值;
(2)估计本次达标运动会中,学生成绩的中位数和平均数;
(3)已知[90,100]组中有2名男生,4名女生,为掌握性别与学生体质的关系,从本组中选2名作进一步调查,求2名学生中至少有1名男生的频率.
已知函数f(x)=cos(2ωx﹣)+sin2ωx﹣cos2ωx(ω>0)的最小正周期是π.
(1)求函数f(x)图象的对称轴方程;
(2)求函数f(x)的单调递增区间.
如图,三棱柱ABC﹣A1B1C1的所有棱长都为1,且侧棱与底面垂直,M是BC的中点.
(1)求证:A1C∥平面AB1M;
(2)求直线BB1与平面AB1M所成角的正弦值;
(3)求点C到平面AB1M的距离.
已知f(x)=是奇函数,g(x)=x2+nx+1为偶函数.
(1)求m,n的值;
(2)不等式3f(sinx)•g(sinx)>g(cosx)﹣λ对任意x∈R恒成立,求实数λ的取值范围.
如图,已知点A(﹣3,0),B(3,0),M是线段AB上的任意一点,在AB的同侧分别作正方形AMCD、MBEF,⊙P和⊙Q是两个正方形的外接圆,它们交于点M,N.
(1)证明:直线MN恒过一定点S,并求S的坐标;
(2)过A作⊙Q的割线,交⊙Q于G、H两点,求|AH|•|AG|的取值范围.
已知集合,,且,则
A.7 B.6 C.5 D.4
如图,在复平面内,表示复数的点为,则复数的共轭复数是
A. B. C. D.
下列函数中,在其定义域内既是奇函数又单调递增的函数是
若某几何体的三视图如图所示,则此几何体的体积等于
A.30 B.24 C.12 D.4
若函数同时满足以下三个性质:①的最小正周期为;②对任意的,都有
;③在上是减函数,则的解析式可能是
A. B.
C. D.