设函数 ,则函数的各极小值之和为( )
A. B.
C. D.
一个总体中有60个个体,随机编号0,1,2,…,59,依编号顺序平均分成6个小组,组号依次为1,2,3,…,6.现用系统抽样方法抽取一个容量为6的样本,若在第1组随机抽取的号码为3,则在第5组中抽取的号码是 .
已知函数,若,则实数的取值范围是 .
在四面体中,,二面角的余弦值为,则此四面体的外接球的表面积为 .
设平面向量,定义以轴非负半轴为始边,逆时针方向为正方向,为终边的角称为向量的幅角.若是向量的模,是向量的模,的幅角是,的幅角是,定义的结果仍是向量,它的模为,它的幅角为+.给出.试用、的坐标表示的坐标,结果为_______.
在△ABC中,角A,B,C所对的边分别为a,b,c,若△ABC的面积S=bc,且a=5.
(1)求△ABC的面积的最大值,并判断此时△ABC的形状;
(2)若tanB=,=λ(λ>0),||=,求λ的值.
某市小型机动车驾照“科二”考试中共有5项考察项目,分别记作①,②,③,④,⑤.
(1)某教练将所带10名学员“科二”模拟考试成绩进行统计(如图1所示),并打算从恰有2项成绩不合格的学员中任意抽出2人进行补测(只测不合格的项目),求补测项目种类不超过3项的概率;
(2)如图2,某次模拟演练中,教练要求学员甲倒车并转向90°,在汽车边缘不压射线AC与射线BD的前提下,将汽车驶入指定的停车位. 根据经验,学员甲转向90°后可使车尾边缘完全落在线段CD,且位于CD内各处的机会相等.若CA="BD=0.3m," AB="2.4m." 汽车宽度为1.8m, 求学员甲能按教练要求完成任务的概率.
如图,在三棱锥中,,,分别为的中点,为线段上一点,且平面.
(Ⅰ)求的长;
(Ⅱ)当直线平面时,求四棱锥的体积.
如图,在直角坐标系中,圆与轴负半轴交于点,过点的直线,分别与圆交于,两点.
(Ⅰ)若,,求的面积;
(Ⅱ)若直线过点,证明:为定值,并求此定值.
已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).
(1)求的解析式及单调递减区间;
(2)是否存在常数,使得对于定义域内的任意,恒成立?若存在,求出的值;若不存在,请说明理由.