在直角坐标系中,曲线的参数方程为(为参数),若以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:(其中为常数).
(1)若曲线与曲线只有一个公共点,求的取值范围;
(2)当时,求曲线上的点与曲线上点的最小距离.
在直角坐标系中,直线的方程为,曲线的参数方程为(为参数).
(1)已知在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点P的极坐标为,判断点P与直线的位置关系;
(2)设点Q是曲线上的一个动点,求它到直线的距离的最小值.
已知曲线的极坐标方程为.以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程为(为参数).
(Ⅰ)判断直线与曲线的位置关系,并说明理由;
(Ⅱ)若直线和曲线相交于两点,且,求直线的斜率.
已知直角坐标系xOy和极坐标系Ox的原点与极点重合,x轴正半轴与极轴重合,单位长度相同,在直角坐标系下,曲线C的参数方程为为参数).
(1)在极坐标系下,若曲线犆与射线和射线分别交于A,B两点,求ΔAOB的面积;
(2)在直角坐标系下,给出直线的参数方程为为参数),求曲线C与直线的交点坐标.
在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为(为参数),与分别交于,
(1)写出的平面直角坐标系方程和的普通方程;
(2)若、、成等比数列,求的值.
在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数),试判断直线与曲线的位置关系,并说明理由.
以双曲线:的左焦点为极点,轴正方向为极轴方向(长度单位不变)建立极坐标系,则双曲线的一条倾斜角为锐角的渐近线的极坐标方程是 .
(1)若a=1,解不等式;
(2)若函数有最小值,求实数a的取值范围.
(1);
(2).