四棱锥底面是菱形,,,分别是的中点.
(1)求证:平面⊥平面;
(2)是上的动点,与平面所成的最大角为,求二面角的正切值.
如图,在三棱锥中,直线平面,且
,又点,,分别是线段,,的中点,且点是线段上的动点.
(1)证明:直线平面;
(2)若,求二面角的平面角的余弦值.
已知数列是首项和公比均为的等比数列,设.
(1)求证数列是等差数列;
(2)求数列的前n项和.
为了倡导健康、低碳、绿色的生活理念,某市建立了公共自行车服务系统鼓励市民租用公共自行车出行,公共自行车按每车每次的租用时间进行收费,具体收费标准如下:
①租用时间不超过1小时,免费;
②租用时间为1小时以上且不超过2小时,收费1元;
③租用时间为2小时以上且不超过3小时,收费2元;
④租用时间超过3小时的时段,按每小时2元收费(不足1小时的部分按1小时计算)
已知甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过1小时的概率分别是0.4和0.5 ,租用时间为1小时以上且不超过2小时的概率分别是0.5和0.3.
(Ⅰ)求甲、乙两人所付租车费相同的概率;
(Ⅱ)设甲、乙两人所付租车费之和为随机变量,求的分布列和数学期望E
寒假期间,我市某校学生会组织部分同学,用“10分制”随机调查“阳光花园”社区人们的幸福度,现从调查人群中随机抽取16名,如果所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶);若幸福度分数不低于8.5分,则该人的幸福度为“幸福”.
(I)求从这16人中随机选取3人,至少有2人为“幸福”的概率;
(II)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“幸福”的人数,求的分布列及数学期望.
已知向量,设函数.
(1).求函数f(x)的最小正周期;
(2).已知a,b,c分别为三角形ABC的内角对应的三边长,A为锐角,a=1,,且恰是函数f(x)在上的最大值,求A,b和三角形ABC的面积.
在△中,角、、所对的边长分别为、、,
且.
(1)若,,求的值;
(2)若,求的取值范围.
在三棱柱中侧棱垂直于底面,,,,且三棱柱的体积为3,则三棱柱的外接球的表面积为 .
点是不等式组表示的平面区域内的一动点,且不等式总成立,则的取值范围是________________.
已知,,则的最小值为 .