题目内容


四棱锥底面是菱形,,分别是的中点.

(1)求证:平面⊥平面

(2)上的动点,与平面所成的最大角为,求二面角的正切值.


(2)过E作EQ⊥AC,垂足为Q,过作QG⊥AF,垂足为G,连GE,∵PA⊥面ABCD,∴PA⊥EQ,EQ⊥面PAC,则∠EGQ是二面角E-AF-C的平面角.

过点A作AH⊥PD,连接EH,∵AE⊥面PAD,∴∠AHE是EH与面PAD所成的最大角.

∵∠AHE=,∴AH=AE=,AH﹒PD=PA﹒AD,2a﹒PA=,PA=2,PC=4a,EQ=,CQ=,GQ=,tan∠EGQ=.

【考点定位】1.面面垂直的判定.2.动点问题.3.二面角问题.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网