设函数.
(Ⅰ)当时,求函数的图象在点处的切线方程;
(Ⅱ)已知,若函数的图象总在直线的下方,求的取值范围;
(Ⅲ)记为函数的导函数.若,试问:在区间上是否存在()个正数…,使得成立?请证明你的结论.
如图,在圆上任取一点,过点作轴的垂线段,为垂足.设为线段的中点.
(Ⅰ)当点在圆上运动时,求点的轨迹的方程;
(Ⅱ)若圆在点处的切线与轴交于点,试判断直线与轨迹的位置关系.
如图, 是边长为的正方形,平面,,,与平面所成角为.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.
已知函数()的周期为4。
(Ⅰ)求的解析式;
(Ⅱ)将的图象沿轴向右平移个单位得到函数的图象,
、分别为函数图象的最高点和最低点(如图),求的大小。
某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:
奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.
(Ⅰ)求1名顾客摸球3次停止摸奖的概率;
(Ⅱ)记为1名顾客摸奖获得的奖金数额,求随机变量的分布列和数学期望.
已知,过点作一直线与双曲线相交且仅有一个公共点,则该直线的倾斜角恰好等于此双曲线渐近线的倾斜角或;类比此思想,已知,过点作一直线函数的图象相交且仅有一个公共点,则该直线的倾斜角为 .
已知函数,若二次函数满足:①与的图象在点处有公共切线;②是上的单调函数.则= .
设,满足约束条件,若目标函数的最大值为6,则______.
已知某几何体的三视图如右图所示,则该几何体的体积为
已知随机变量,若,则等于