已知命题“如果x⊥y,y∥z,则x⊥z”是假命题,那么字母x,y,z在空间所表示的几何图形可能是( )
A.全是直线 B.全是平面
C.x,z是直线,y是平面 D.x,y是平面,z是直线
如图甲,⊙O的直径AB=2,圆上两点C、D在直径AB的两侧,且∠CAB=,∠DAB=.沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),F为BC的中点,E为AO的中点.根据图乙解答下列各题:
(1)求三棱锥C-BOD的体积;
(2)求证:CB⊥DE;
(3)在上是否存在一点G,使得FG∥平面ACD?若存在,试确定点G的位置;若不存在,请说明理由.
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4,BD=4,AB=2CD=8.
(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(2)当M点位于线段PC什么位置时,PA∥平面MBD?
(3)求四棱锥P-ABCD的体积.
如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2,BC=3.
(1)求证:AB1∥平面BC1D;
(2)求四棱锥B-AA1C1D的体积.
如图四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.
(1)证明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABD-A1B1D1的体积.
已知数列{an}中,a1=1,an+1= (n∈N*).
(1)求数列{an}的通项an;
(2)若数列{bn}满足bn=数列{bn}的前n项和为Tn,若不等式(-1)nλ<Tn对一切n∈N*恒成立,求λ的取值范围.
已知正项数列{an},其前n项和Sn满足6Sn=a+3an+2,且a1,a2,a6是等比数列{bn}的前三项.
(1)求数列{an}与{bn}的通项公式;
(2)记Tn=a1bn+a2bn-1+…+anb1,n∈N*,证明:3Tn+1=2bn+1-an+1(n∈N*).
某工业城市按照“十二五”(2011年至2015年)期间本地区主要污染物排放总量控制要求,进行减排治污.现以降低SO2的年排放量为例,原计划“十二五”期间每年的排放量都比上一年减少0.3万吨,已知该城市2011年SO2的年排放量约为9.3万吨.
(1)按原计划,“十二五”期间该城市共排放SO2约多少万吨?
(2)该城市为响应“十八大”提出的建设“美丽中国”的号召,决定加大减排力度.在2012年刚好按原计划完成减排任务的条件下,自2013年起,SO2的年排放量每年比上一年减少的百分率为p,为使2020年这一年SO2的年排放量控制在6万吨以内,求p的取值范围.
已知数列{an}的前n项和为Sn,且Sn=2an-1;数列{bn}满足bn-1-bn=bnbn-1(n≥2,n∈N*),b1=1.
(1)求数列{an},{bn}的通项公式;
(2)求数列的前n项和Tn.
已知函数f(x)=|x-a|.
(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.