某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算的K2≈3.918,经查对下面的临界值表,我们( )
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| A、至少有95%的把握认为“这种血清能起到预防感冒的作用” |
| B、至少有99%的把握认为“这种血清能起到预防感冒的作用” |
| C、至少有97.5%的把握认为“这种血清能起到预防感冒的作用” |
| D、没有充分理由说明“这种血清能起到预防感冒的作用” |
Sn是数列{an}的前n项和,an=
,则S1=1-
,S2=1-
,S3=1-
,S4=1-
,由此可以归纳出( )
| 1 |
| n(n+1) |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
A、Sn=1-
| ||
B、Sn=1-
| ||
C、Sn=1-
| ||
D、Sn=1-
|
已知集合M={x|(x-1)2>1,x∈R},N={-1,0,1,2,3},则M∩N=( )
| A、{-1,3} |
| B、{-1,0,3} |
| C、{0,2,3} |
| D、{1,2,3} |
| A、BC与平面A′BE内某直线平行 |
| B、BC与平面A′BE内某直线垂直 |
| C、CD∥平面A′BE |
| D、CD⊥平面A′BE |
从一个三棱柱的6个顶点中任取4个做为顶点,能构成三棱锥的个数设为m;过三棱柱任意两个顶点的直线(15条)中,其中能构成异面直线有n对,则m,n的取值分别为( )
| A、15,45 |
| B、10,30 |
| C、12,36 |
| D、12,48 |
为了丰富高一学生的课外生活,某校要组建数学、计算机、航空模型3个兴趣小组,小明要选报其中的2个,则基本事件有( )
| A、1个 | B、2个 | C、3个 | D、4个 |
若复数z满足z(1+2i)=3-4i(i为虚数单位),则z的共轭复数是( )
| A、-1+2i | B、-1-2i |
| C、1+2i | D、1-2i |
甲、乙、丙三位同学被调查是否去过A、B、C三个城市,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为( )
| A、A | B、B | C、C | D、A和B |
对于函数f(x)=sin(πx+
),下列命题正确的是( )
| π |
| 2 |
| A、f(x)的周期为π,且在[0,1]上单调递增 |
| B、f(x)的周期为2,且在[0,1]上单调递减 |
| C、f(x)的周期为π,且在[-1,0]上单调递增 |
| D、f(x)的周期为2,且在[-1,0]上单调递减 |