已知函数f(x)=
,g(x)=2x.若函数y=f(x)-g(x)恰有3个零点,则实a的值是( )
|
| A、2 | ||
| B、-2 | ||
C、-
| ||
D、
|
“x=3且y=5”是xy=15的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既非充分又非必要条件 |
命题“?x∈R,2x≤0”的否定是( )
| A、?x∈R,2x>0,假命题 |
| B、?x∈R,2x>0,真命题 |
| C、?x∈R,2x>0,假命题 |
| D、?x∈R,2x>0,真命题 |
曲线y=xsinx-cosx+x在x=
处切线的斜率为( )
| π |
| 2 |
| A、1 | B、2 | C、3 | D、4 |
若抛物线y2=ax(a>0)上存在两点M,N关于直线y=x-2对称,则a的取值范围是( )
A、0<a<
| ||
B、0<a<
| ||
| C、0<a<2 | ||
D、0<a<
|
函数y=x2sinx的导数为( )
| A、y′=2xsinx-x2cosx |
| B、y′=2xcosx+x2sinx |
| C、y′=x2cosx+2xsinx |
| D、y′=xcosx-x2sinx |
曲线y=ln(x+2)-
在x=-1处的切线方程是( )
| 1 |
| x |
| A、y=x+2 |
| B、y=x+3 |
| C、y=2x+3 |
| D、y=2x+4 |
某地西红柿自2月1日开始分批上市,通过市场调查,某批西红柿上市距2月1日的天数t与其种植成本Q(单位:元/100kg)的相关数据如表:
根据表中数据,下列函数模型中可以描述西红柿的种植成本Q与t的变化关系的是( )
| 时间t | 50 | 110 | 250 |
| 种植成本Q | 150 | 108 | 150 |
| A、Q=at+b(a≠0) |
| B、Q=at2+bt+c(a≠00 |
| C、Q=a•bt(a≠0) |
| D、Q=a•logbt(a≠0) |
己知A={-2,2,x2-1},B={0,2,x2+3x},且A=B,则x的值为( )
| A、1或-1 | B、0 | C、-1 | D、-2 |