已知函数f(x)=alnx-ax-3(a∈R)。
(1)讨论函数f(x)的单调性;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对任意的t∈[1,2],若函数g(x)=x3+x2[f′(x)+]在区间(t,3)上有最值,求实数m取值范围;
(3)求证:

设f(x)=+xlnx,g(x)=x3-x2-3.
(1)a=2时,求曲线y=f(x)在x=1处得切线方程;
(2)若果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;
(3)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,求实数a的取值范围。

设f(x)=+xlnx,g(x)=x3-x2-3.
(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;
(2)如果存在x1,x2∈[0,2],使得g(x1)- g(x2)≥M成立,求满足上述条件的最大整数M;
(3)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,求实数a的取值范围.
曲线f(x)=xlnx的最小值为
[     ]
A.
B.e
C.-e
D.
某品牌电视生产厂家有A、B两种型号的电视机参加了家电下乡活动,若厂家对A、B两种型号的电视机的投放金额分别为p、q万元,农民购买A、B两种电视机获得的补贴分别为万元,已知A、B两种型号的电视机的投放总额为10万元,且A、B两种型号的电视机的投放金额均不低于1万元,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出最大值(精确到0.1,参考数据:ln4≈1.4)。
设函数f(x)=2x+-1(x<0),则f(x)
[     ]
A.有最大值
B.有最小值
C.是增函数
D.是减函数
已知函数f(x)=x3-(2a+1)x2+3a(a+2)x+1,a∈R。
(1)当a=0时,求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)当a=-1时,求函数y=f(x)在[0,4]上的最大值和最小值;
(3)当函数y=f′(x)在(0,4)上有唯一的零点时,求实数a的取值范围.
已知函数f(x)=2lnx-x2(x>0)。
(1)求函数f(x)的单调区间与最值;
(2)若方程2xlnx+mx-x3=0在区间[,e]内有两个不相等的实根,求实数m的取值范围;(其中e为自然对数的底数)
(3)如果函数g(x)=f(x)-ax的图像与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,求证:g′(px1+qx2)<0(其中,g′(x)是g(x)的导函数,正常数p,q满足p+q=1,q>p)
 0  17005  17013  17019  17023  17029  17031  17035  17041  17043  17049  17055  17059  17061  17065  17071  17073  17079  17083  17085  17089  17091  17095  17097  17099  17100  17101  17103  17104  17105  17107  17109  17113  17115  17119  17121  17125  17131  17133  17139  17143  17145  17149  17155  17161  17163  17169  17173  17175  17181  17185  17191  17199  266669