已知函数f(x)=lnx+x2
(1)若函数g(x)=f(x)-ax在其定义域内为增函数,求实数a的取值范围;
(2)在(1)的条件下,若a>1,h(x)=x3-3ax,x∈[1,2],求h(x)的极小值;
(3)设F(x)=2f(x)-3x2-kx(k∈R),若函数F(x)存在两个零点,m,n(0<m<n),且2x0=m+n,证明:函数F(x)在点(x0,F(x0))处的切线不可能平行于x轴。
设函数f(x)=x2+bln(x+1),其中b≠0。
(1)当时,判断函数f(x)的定义域上的单调性;
(2)试讨论函数f(x)的极值情况,若极值存在,求出极值点。
已知函数f(x)=x2+bsinx-2(b∈R),F(x)=f(x)+2,且对于任意实数x,恒有F(x-5)=F(5-x),
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)已知函数g(x)=f(x)+2(x+1)+ alnx在区间(0,1)上单调,求实数a的取值范围;
(Ⅲ)函数h(x)=2lnx-f(x)-k有几个零点?
 0  16672  16680  16686  16690  16696  16698  16702  16708  16710  16716  16722  16726  16728  16732  16738  16740  16746  16750  16752  16756  16758  16762  16764  16766  16767  16768  16770  16771  16772  16774  16776  16780  16782  16786  16788  16792  16798  16800  16806  16810  16812  16816  16822  16828  16830  16836  16840  16842  16848  16852  16858  16866  266669