已知△ABC的顶点A(3,0),B(0,1),C(1,1),P(x,y)在△ABC内部(包括边界),若目标函数z=(a≠0)取得最大值时的最优解有无穷多组,则点(a,b)的轨迹可能是( )
不等式组,所表示的平面区域的面积等于( )
(1) 已知函数,求函数的最小值;(2) 设x,y为正数, 且x+y=1,求+的最小值.
设为正数,且.求的最小值.
(12分)利用基本不等式求最值:(1)若,求函数 的最小值,并求此时x的值.(2)设 ,求函数 的最大值.
(本题满分12分) 已知a,b都是正实数,且,求证:
某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉的价格为3200元,面粉的保管等其它费用为平均每吨每天3元,购买面粉每次需要支付运费900元。(Ⅰ)求该厂每隔多少天购买一次面粉,才能使平均每天支付的总费用最少?最少费用为多少?(Ⅱ)某提供面粉的公司规定:当一次购买面粉不少于120吨时,价格可享受9.5折优惠,问该厂是否考虑利用此优惠条件?请说明理由。
(本小题满分12分)某商品进货价每件50元,据市场调查,当销售价格(每件x元)为50<x≤80时,每天售出的件数为,若要使每天获得的利润最多,销售价格每件应定为多少元?
(14分)2006年5月3日进行抚仙湖水下考古,潜水员身背氧气瓶潜入湖底进行考察,氧气瓶形状如图,其结构为一个圆柱和一个圆台的组合(设氧气瓶中氧气已充满,所给尺寸是氧气瓶的内径尺寸),潜水员在潜入水下米的过程中,速度为米/分,每分钟需氧量与速度平方成正比(当速度为1米/分时,每分钟需氧量为0.2L);在湖底工作时,每分钟需氧量为0.4 L;返回水面时,速度也为米/分,每分钟需氧量为0.2 L,若下潜与上浮时速度不能超过p米/分,试问潜水员在湖底最多能工作多少时间?(氧气瓶体积计算精确到1 L,、p为常数,圆台的体积V=,其中h为高,r、R分别为上、下底面半径.)
(本小题满分12分)某养鸡厂想筑一个面积为144平方米的长方形围栏。围栏一边靠墙,筑成这样的围栏最少要用多少米铁丝网?此时利用墙多长?