ÌâÄ¿ÄÚÈÝ
ÒÑÖªµãPÔÚÍÖÔ²C£º
+
=1(a£¾b£¾0)ÉÏ£¬ÒÔPΪԲÐĵÄÔ²ÓëxÖáÏàÇÐÓÚÍÖÔ²µÄÓÒ½¹µãF2£¬ÇÒ
•
=2£¬tan¡ÏOPF2=
£¬ÆäÖÐOÎª×ø±êԵ㣮
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÒÑÖªµãM£¨-1£¬0£©£¬ÉèQÊÇÍÖÔ²CÉϵÄÒ»µã£¬¹ýQ¡¢MÁ½µãµÄÖ±Ïßl½»yÖáÓÚµãN£¬Èô
=2
£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨¢ó£©×÷Ö±Ïßl1ÓëÍÖÔ²D£º
+
=1½»ÓÚ²»Í¬µÄÁ½µãS£¬T£¬ÆäÖÐSµãµÄ×ø±êΪ£¨-2£¬0£©£¬ÈôµãG£¨0£¬t£©ÊÇÏß¶ÎST´¹Ö±Æ½·ÖÏßÉÏÒ»µã£¬ÇÒÂú×ã
•
=4£¬ÇóʵÊýtµÄÖµ£®
| x2 |
| a2 |
| y2 |
| b2 |
| OP |
| OF2 |
| 2 |
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÒÑÖªµãM£¨-1£¬0£©£¬ÉèQÊÇÍÖÔ²CÉϵÄÒ»µã£¬¹ýQ¡¢MÁ½µãµÄÖ±Ïßl½»yÖáÓÚµãN£¬Èô
| NQ |
| QM |
£¨¢ó£©×÷Ö±Ïßl1ÓëÍÖÔ²D£º
| x2 |
| a2 |
| 2y2 |
| b2 |
| GS |
| GT |
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨¢ñ£©ÓÉÒÑÖªÌõ¼þÍÆµ¼³öPF2¡ÍOF2£¬ÉèrΪԲPµÄ°ë¾¶£¬cΪÍÖÔ²µÄ°ë½¹¾à£¬ÓÉ
•
=2£¬tan¡ÏOPF2=
=
£¬Çó³öc=
£¬r=1£¬ÔÙÓɵãP(¡À
£¬1)ÔÚÍÖÔ²£¬Çó³öa2=4£¬b2=2£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨¢ò£©ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x+1£©£¬ÓÉN£¨0£¬k£©£¬Q£¨x1£¬y1£©£¬
=2
£¬ÄÜÇó³öÖ±ÏßlµÄ·½³Ì£®
£¨¢ó£©ÓÉÌâÒâÖªÍÖÔ²D£º
+y2=1£¬ÉèÖ±Ïßl1µÄ·½³ÌΪy=k£¨x+2£©£¬°ÑËü´úÈëÍÖÔ²DµÄ·½³ÌµÃ£º£¨1+4k2£©x2+16k2x+£¨16k2-4£©=0£¬ÀûÓÃΤ´ï¶¨ÀíÄÜÇó³öÂú×ãÌõ¼þµÄʵÊýtµÄÖµ£®
| OP |
| OF2 |
| c |
| r |
| 2 |
| 2 |
| 2 |
£¨¢ò£©ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x+1£©£¬ÓÉN£¨0£¬k£©£¬Q£¨x1£¬y1£©£¬
| NQ |
| QM |
£¨¢ó£©ÓÉÌâÒâÖªÍÖÔ²D£º
| x2 |
| 4 |
½â´ð£º
£¨±¾Ð¡ÌâÂú·Ö14·Ö£©
½â£º£¨¢ñ£©ÓÉÌâÒâÖª£¬ÔÚ¡÷OPF2ÖУ¬PF2¡ÍOF2£¬
ÓÉtan¡ÏOPF2=
£¬µÃ£ºcos¡ÏPOF2=
£¬
ÉèrΪԲPµÄ°ë¾¶£¬cΪÍÖÔ²µÄ°ë½¹¾à£¬
¡ß
•
=2£¬¡à
•c•
=2£¬
ÓÖ£¬tan¡ÏOPF2=
=
£¬½âµÃ£ºc=
£¬r=1£¬
¡àµãPµÄ×ø±êΪ(¡À
£¬1)£¬¡£¨2·Ö£©
¡ßµãPÔÚÍÖÔ²C£º
+
=1(a£¾b£¾0)ÉÏ£¬¡à
+
=1£¬
ÓÖa2-b2=c2=2£¬½âµÃ£ºa2=4£¬b2=2£¬
¡àÍÖÔ²CµÄ·½³ÌΪ
+
=1£®¡£¨4·Ö£©
£¨¢ò£©ÓÉ£¨¢ñ£©ÖªÍÖÔ²CµÄ·½³ÌΪ
+
=1£¬
ÓÉÌâÒâÖªÖ±ÏßlµÄбÂÊ´æÔÚ£¬¹ÊÉèÆäбÂÊΪk£¬
ÔòÆä·½³ÌΪy=k£¨x+1£©£¬N£¨0£¬k£©£¬
ÉèQ£¨x1£¬y1£©£¬¡ß
=2
£¬
¡à£¨x1£¬y1-k£©=2£¨-1-x1£¬-y1£©£¬
¡àx1=-
£¬y1=
£¬¡£¨7·Ö£©
ÓÖ¡ßQÊÇÍÖÔ²CÉϵÄÒ»µã£¬¡à
+
=1£¬
½âµÃk=¡À4£¬
¡àÖ±ÏßlµÄ·½³ÌΪ4x-y+4=0»ò4x+y+4=0£®¡£¨9·Ö£©
£¨¢ó£©ÓÉÌâÒâÖªÍÖÔ²D£º
+y2=1£¬
ÓÉS£¨-2£¬0£©£¬ÉèT£¨x1£¬y1£©£¬
¸ù¾ÝÌâÒâ¿ÉÖªÖ±Ïßl1µÄбÂÊ´æÔÚ£¬
ÉèÖ±ÏßбÂÊΪk£¬ÔòÖ±Ïßl1µÄ·½³ÌΪy=k£¨x+2£©£¬
°ÑËü´úÈëÍÖÔ²DµÄ·½³Ì£¬ÏûÈ¥y£¬
ÕûÀíµÃ£º£¨1+4k2£©x2+16k2x+£¨16k2-4£©=0£¬
ÓÉΤ´ï¶¨ÀíµÃ-2+x1=-
£¬
Ôòx1=
£¬y1=k£¨x1+2£©=
£¬
ËùÒÔÏß¶ÎSTµÄÖеã×ø±êΪ(-
£¬
)£¬
£¨1£©µ±k=0ʱ£¬ÔòÓÐT£¨2£¬0£©£¬Ïß¶ÎST´¹Ö±Æ½·ÖÏßΪyÖᣬ
¡à
=(-2£¬-t)£¬
=(2£¬-t)£¬
ÓÉ
•
=-4+t2=4£¬½âµÃ£ºt=¡À2
£®¡£¨11·Ö£©
£¨2£©µ±k¡Ù0ʱ£¬ÔòÏß¶ÎST´¹Ö±Æ½·ÖÏߵķ½³ÌΪy-
=-
£¨x+
£©£¬
¡ßµãG£¨0£¬t£©ÊÇÏß¶ÎST´¹Ö±Æ½·ÖÏßµÄÒ»µã£¬
Áîx=0£¬µÃ£ºt=-
£¬
¡à
=(-2£¬-t)£¬
=(x1£¬y1-t)£¬
ÓÉ
•
=-2x1-t(y1-t)=
=4£¬½âµÃ£ºk=¡À
£¬
´úÈët=-
£¬½âµÃ£ºt=¡À
£¬
×ÛÉÏ£¬Âú×ãÌõ¼þµÄʵÊýtµÄֵΪt=¡À2
»òt=¡À
£®¡£¨14·Ö£©
½â£º£¨¢ñ£©ÓÉÌâÒâÖª£¬ÔÚ¡÷OPF2ÖУ¬PF2¡ÍOF2£¬
ÓÉtan¡ÏOPF2=
| 2 |
| ||
| 3 |
ÉèrΪԲPµÄ°ë¾¶£¬cΪÍÖÔ²µÄ°ë½¹¾à£¬
¡ß
| OP |
| OF2 |
| c2+r2 |
| ||
| 3 |
ÓÖ£¬tan¡ÏOPF2=
| c |
| r |
| 2 |
| 2 |
¡àµãPµÄ×ø±êΪ(¡À
| 2 |
¡ßµãPÔÚÍÖÔ²C£º
| x2 |
| a2 |
| y2 |
| b2 |
(¡À
| ||
| a2 |
| 1 |
| b2 |
ÓÖa2-b2=c2=2£¬½âµÃ£ºa2=4£¬b2=2£¬
¡àÍÖÔ²CµÄ·½³ÌΪ
| x2 |
| 4 |
| y2 |
| 2 |
£¨¢ò£©ÓÉ£¨¢ñ£©ÖªÍÖÔ²CµÄ·½³ÌΪ
| x2 |
| 4 |
| y2 |
| 2 |
ÓÉÌâÒâÖªÖ±ÏßlµÄбÂÊ´æÔÚ£¬¹ÊÉèÆäбÂÊΪk£¬
ÔòÆä·½³ÌΪy=k£¨x+1£©£¬N£¨0£¬k£©£¬
ÉèQ£¨x1£¬y1£©£¬¡ß
| NQ |
| QM |
¡à£¨x1£¬y1-k£©=2£¨-1-x1£¬-y1£©£¬
¡àx1=-
| 2 |
| 3 |
| k |
| 3 |
ÓÖ¡ßQÊÇÍÖÔ²CÉϵÄÒ»µã£¬¡à
(-
| ||
| 4 |
(
| ||
| 2 |
½âµÃk=¡À4£¬
¡àÖ±ÏßlµÄ·½³ÌΪ4x-y+4=0»ò4x+y+4=0£®¡£¨9·Ö£©
£¨¢ó£©ÓÉÌâÒâÖªÍÖÔ²D£º
| x2 |
| 4 |
ÓÉS£¨-2£¬0£©£¬ÉèT£¨x1£¬y1£©£¬
¸ù¾ÝÌâÒâ¿ÉÖªÖ±Ïßl1µÄбÂÊ´æÔÚ£¬
ÉèÖ±ÏßбÂÊΪk£¬ÔòÖ±Ïßl1µÄ·½³ÌΪy=k£¨x+2£©£¬
°ÑËü´úÈëÍÖÔ²DµÄ·½³Ì£¬ÏûÈ¥y£¬
ÕûÀíµÃ£º£¨1+4k2£©x2+16k2x+£¨16k2-4£©=0£¬
ÓÉΤ´ï¶¨ÀíµÃ-2+x1=-
| 16k2 |
| 1+4k2 |
Ôòx1=
| 2-8k2 |
| 1+4k2 |
| 4k |
| 1+4k2 |
ËùÒÔÏß¶ÎSTµÄÖеã×ø±êΪ(-
| 8k2 |
| 1+4k2 |
| 2k |
| 1+4k2 |
£¨1£©µ±k=0ʱ£¬ÔòÓÐT£¨2£¬0£©£¬Ïß¶ÎST´¹Ö±Æ½·ÖÏßΪyÖᣬ
¡à
| GS |
| GT |
ÓÉ
| GS |
| GT |
| 2 |
£¨2£©µ±k¡Ù0ʱ£¬ÔòÏß¶ÎST´¹Ö±Æ½·ÖÏߵķ½³ÌΪy-
| 2k |
| 1+4k2 |
| 1 |
| k |
| 8k2 |
| 1+4k2 |
¡ßµãG£¨0£¬t£©ÊÇÏß¶ÎST´¹Ö±Æ½·ÖÏßµÄÒ»µã£¬
Áîx=0£¬µÃ£ºt=-
| 6k |
| 1+4k2 |
¡à
| GS |
| GT |
ÓÉ
| GS |
| GT |
| 4(16k4+15k2-1) |
| (1+4k2)2 |
| ||
| 7 |
´úÈët=-
| 6k |
| 1+4k2 |
2
| ||
| 5 |
×ÛÉÏ£¬Âú×ãÌõ¼þµÄʵÊýtµÄֵΪt=¡À2
| 2 |
2
| ||
| 5 |
µãÆÀ£º±¾Ì⿼²éÍÖÔ²·½³Ì¡¢Ö±Ïß·½³ÌµÄÇ󷨣¬¿¼²éÂú×ãÌõ¼þµÄʵÊýÖµµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâµÈ¼Ûת»¯Ë¼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
¶ÔÈÎÒâʵÊýa¡¢b¡¢c£¬¸ø³öÏÂÁÐÃüÌ⣬ÆäÖÐÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
| A¡¢¡°a=b¡±ÊÇ¡°ac=bc¡±µÄ³äÒªÌõ¼þ | ||
B¡¢¡°a+
| ||
| C¡¢¡°a£¾b¡±ÊÇ¡°a2£¾b2¡±µÄ³ä·ÖÌõ¼þ | ||
| D¡¢¡°a£¼5¡±ÊÇ¡°a£¼3¡±µÄ±ØÒªÌõ¼þ |