题目内容

已知某人打靶时,每次击中目标的概率是0.8,现采用随机模拟的方法估计此人打靶三次恰有两次击中目标的概率:先由计算器算出0到4之间取整数值的随机数,指定0,1,2,3表示击中,4表示不击中;再以每三个随机数为一组,代表3次打靶的结果.经随机模拟产生了20组随机数:
据此估计,此人打靶三次恰有两次击中目标的额概率是(  )
A、0.348B、0.35
C、0.3D、0.6
考点:二项分布与n次独立重复试验的模型
专题:应用题,概率与统计
分析:由题意知模拟三次投篮的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三次投篮恰有两次命中的有可以通过列举得到共5组随机数,根据概率公式,得到结果.
解答: 解:由题意知模拟三次投篮的结果,经随机模拟产生了如下20组随机数,
在20组随机数中表示三次投篮恰有两次命中的有:140、422、343、304、400、114、134、024、334、143、402、104,共12组随机数,
∴所求概率为
12
20
=0.6,
故选:D.
点评:本题考查了古典概型及其概率计算公式,是基础的计算题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网