题目内容

7.设集合An={1,2,3,…,n}(n∈N*,n≥3),记An中的元素组成的非空子集为$A_i^'$(i∈N*,i=1,2,3,…,2n-1),对于?i∈{1,2,3,…,2n-1},$A_i^'$中的最小元素和为Sn,则S5=(  )
A.32B.57C.75D.480

分析 题意得:在所有非空子集中每个元素出现2n-1次.故有2n-1个子集含1,有2n-2个子集不含1含2,有2n-3子集不含1,2,含3…有2i-1个子集不含1,2,3…i-1,而含i,进而利用错位相减法求出其和.

解答 解:由题意得:在所有非空子集中每个元素出现2n-1次.
故有2n-1个子集含1,有2n-2个子集不含1含2,有2n-3子集不含1,2,含3…有2i-1个子集不含1,2,3…i-1,而含i.
所以Sn=2n-1×1+2n-2×2+…+21×(n-1)+n
Sn=n•1+(n-1)•2+…+2•2n-2+1•2n-1…①
所以2Sn=n•2+(n-1)•4+…+2•2n-1+1•2n…②
所以①-②可得-Sn=n-(2+4+…+2n-1+2n
所以Sn=2n+1-n-2
所以S5=26-5-2=57.
故选:B

点评 本题考查了错位相减法、等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网