题目内容
17.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知C1:ρ=2cosθ-4sinθ,C2:ρsinθ-2ρcosθ+1=0.(Ⅰ)将C1的方程化为普通方程;
(Ⅱ)求曲线C1与C2两交点之间的距离.
分析 (I)利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\\{{ρ}^{2}={x}^{2}+{y}^{2}}\end{array}\right.$即可得出;
(II)由C2:ρsinθ-2ρcosθ+1=0,化为2x-y-1=0.求出圆心C1到直线的距离d.利用曲线C1与C2两交点之间的距离=2$\sqrt{{r}^{2}-{d}^{2}}$即可得出.
解答 解:(I)C1:ρ=2cosθ-4sinθ,∴ρ2=2ρcosθ-4ρsinθ,∴x2+y2=2x-4y,配方为(x-1)2+(y+2)2=5,可得圆心C1(1,-2),半径r=$\sqrt{5}$.
(II)由C2:ρsinθ-2ρcosθ+1=0,化为y-2x+1=0,即2x-y-1=0.
∴圆心C1到直线的距离d=$\frac{|2-(-2)-1|}{\sqrt{{2}^{2}}+(-1)^{2}}$=$\frac{3\sqrt{5}}{5}$.
∴曲线C1与C2两交点之间的距离=2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{(\sqrt{5})^{2}-(\frac{3\sqrt{5}}{5})^{2}}$=$\frac{8\sqrt{5}}{5}$.
点评 本题考查了极坐标方程转化为直角坐标方程、点到直线的距离公式、直线与圆的相交问题、弦长公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
7.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5得数据如下表:
(Ⅰ)根据上表数据求出y与x的线性回归直线方程$\hat y=\hat bx+\hat a$,
(Ⅱ)若周六同一时间段车流量是25万辆,试根据(Ⅰ)中求出的线性回归方程预测此时PM2.5的浓度是多少?(保留整数)
参考公式其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$:方程$\hat y=\hat bx+\hat a$.
| 时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
| 车流量x(万辆) | 50 | 51 | 54 | 57 | 58 |
| PM2.5的浓度y(微克/立方米) | 69 | 70 | 74 | 78 | 79 |
(Ⅱ)若周六同一时间段车流量是25万辆,试根据(Ⅰ)中求出的线性回归方程预测此时PM2.5的浓度是多少?(保留整数)
参考公式其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$:方程$\hat y=\hat bx+\hat a$.
8.下列函数中,在区间(0,+∞)上为增函数的是( )
| A. | y=$\frac{1}{x}$ | B. | y=-x2 | C. | y=($\frac{1}{2}$)x | D. | y=log2x |
7.在半径为5cm的圆中,圆心角为圆周角的$\frac{2}{3}$的角所对的圆弧长为( )
| A. | $\frac{4π}{3}$cm | B. | $\frac{20π}{3}$cm | C. | $\frac{10π}{3}$cm | D. | $\frac{50π}{3}$cm |