题目内容
如图,已知点P是三角形ABC外一点,且
底面
,点
,
分别在棱
上,且
。 。

(1)求证:
平面
;
(2)当
为
的中点时,求
与平面
所成的角的大小;
(3)是否存在点
使得二面角
为直二面角?并说明理由.
(1)求证:
(2)当
(3)是否存在点
(1)∵PA⊥底面ABC,∴PA⊥BC.
又
,∴AC⊥BC.
∴BC⊥平面PAC.
(2)∵D为PB的中点,DE//BC,
∴
,
又由(Ⅰ)知,BC⊥平面PAC,
∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,
∵PA⊥底面ABC,∴PA⊥AB,又PA=AB,
∴△ABP为等腰直角三角形,∴
,
∴在Rt△ABC中,
,∴
.
∴在Rt△ADE中,
,
∴
与平面
所成的角的大小
.
(3)∵AE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE
平面PAC,PE
平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角
的平面角,
∵PA⊥底面ABC,∴PA⊥AC,∴
.
∴在棱PC上存在一点E,使得AE⊥PC,这时
,
故存在点E使得二面角
是直二面角.
又
∴BC⊥平面PAC.
(2)∵D为PB的中点,DE//BC,
∴
又由(Ⅰ)知,BC⊥平面PAC,
∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,
∵PA⊥底面ABC,∴PA⊥AB,又PA=AB,
∴△ABP为等腰直角三角形,∴
∴在Rt△ABC中,
∴在Rt△ADE中,
∴
(3)∵AE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE
∴∠AEP为二面角
∵PA⊥底面ABC,∴PA⊥AC,∴
∴在棱PC上存在一点E,使得AE⊥PC,这时
故存在点E使得二面角
略
练习册系列答案
相关题目