ÌâÄ¿ÄÚÈÝ
3£®Éè{an}Êǹ«±ÈΪq£¨q¡Ù1£©µÄÎÞÇîµÈ±ÈÊýÁУ¬Èô{an}ÖÐÈÎÒâÁ½ÏîÖ®»ýÈÔÊǸÃÊýÁÐÖеÄÏÔò³Æ{an}Ϊ¡°·â±ÕµÈ±ÈÊýÁС±£®¸ø³öÒÔÏÂÃüÌ⣺£¨1£©a1=3£¬q=2£¬Ôò{an}ÊÇ¡°·â±ÕµÈ±ÈÊýÁС±£»
£¨2£©a1=$\frac{1}{2}$£¬q=2£¬Ôò{an}ÊÇ¡°·â±ÕµÈ±ÈÊýÁС±£»
£¨3£©Èô{an}£¬{bn}¶¼ÊÇ¡°·â±ÕµÈ±ÈÊýÁС±£¬Ôò{an•bn}£¬{an+bn}Ò²¶¼ÊÇ¡°·â±ÕµÈ±ÈÊýÁС±£»
£¨4£©²»´æÔÚ{an}£¬Ê¹{an}ºÍ{an2}¶¼ÊÇ¡°·â±ÕµÈ±ÈÊýÁС±£»
ÒÔÉÏÕýÈ·µÄÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
| A£® | 0 | B£® | 1 | C£® | 2 | D£® | 3 |
·ÖÎö £¨1£©Çó³ö${a_n}=3•{2^{n-1}}$£¬ÓÉa1•a2∉{an}£¬Öª£¨1£©´íÎ󣻣¨2£©ÓÉ${a_n}=\frac{1}{2}•{2^{n-1}}={2^{n-2}}$£¬ÍƵ¼³öÃüÌ⣨2£©ÕýÈ·£»£¨3£©${a_n}+{b_n}=3•{2^{n-1}}$²»ÊÇ¡°·â±ÕµÈ±ÈÊýÁС±£»£¨4£©Èô${a_n}={2^n}$Ϊ¡°·â±ÕµÈ±ÈÊýÁС±£¬Ôò$a_n^2={4^n}$Ϊ¡°·â±ÕµÈ±ÈÊýÁС±£®
½â´ð ½â£º£¨1£©¡ß{an}ÊÇa1=3£¬q=2µÄµÈ±ÈÊýÁУ¬
¡à${a_n}=3•{2^{n-1}}$£¬
ÓÉÌâÒâµÃa1•a2=3¡Á6=18∉{an}£¬¹ÊÃüÌ⣨1£©´íÎó£»
£¨2£©¡ß${a_n}=\frac{1}{2}•{2^{n-1}}={2^{n-2}}$£¬
¡à${a_m}•{a_n}={2^{m-2}}•{2^{n-2}}={2^{m+n-4}}={2^{£¨{m+n-2}£©-2}}={a_{m+n-2}}£¬m+n-2¡Ê{N^*}$£¬¹ÊÃüÌ⣨2£©ÕýÈ·£»
£¨3£©Èô${a_n}={2^{n-1}}£¬{b_n}={2^n}$¶¼Îª¡°·â±ÕµÈ±ÈÊýÁС±£¬
Ôò${a_n}+{b_n}=3•{2^{n-1}}$²»ÊÇ¡°·â±ÕµÈ±ÈÊýÁС±£¬¹ÊÃüÌ⣨3£©´íÎó£»
£¨4£©Èô${a_n}={2^n}$Ϊ¡°·â±ÕµÈ±ÈÊýÁС±£¬Ôò$a_n^2={4^n}$Ϊ¡°·â±ÕµÈ±ÈÊýÁС±£¬¹ÊÃüÌ⣨4£©´íÎó£®
¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éÃüÌâÕæ¼ÙµÄÅжϣ¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâµÈ±ÈÊýÁС¢·â±ÕµÈ±ÈÊýÁеÄÐÔÖʵĺÏÀíÔËÓã®
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |