题目内容

已知函数f(x)=(x3-6x2+3x+t)ex,t∈R.
(Ⅰ)若函数f(x)在点(0,f(0))处的切线方程为4x-y+1=0,则求t的值
(Ⅱ)若函数y=f(x)有三个不同的极值点,求t的值;
(Ⅲ)若存在实数t∈[0,2],使对任意的x∈[1,m],不等式f(x)≤x恒成立,求正整数m的最大值.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的极值,利用导数求闭区间上函数的最值
专题:计算题,函数的性质及应用,导数的概念及应用,导数的综合应用
分析:(Ⅰ)求出导数,求出切线的斜率,令f′(0)=4,即可得到t;
(Ⅱ)求出导数,令g(x)=x3-3x2-9x+3+t,则方程g(x)=0有三个不同的根,求出g(x)的导数,求得g(x)的极值,令极小值小于0,极大值大于0,解不等式即可得到t的范围;
(Ⅲ)先将存在实数t∈[0,2],使不等式f(x)≤x恒成立转化为将t看成自变量,f(x)的最小值)≤x;再构造函数,通过导数求函数的单调性,求函数的最值,求出m的范围.
解答: 解:(Ⅰ) 函数f(x)=(x3-6x2+3x+t)ex
则f′(x)=(x3-3x2-9x+3+t)ex
函数f(x)在点(0,f(0))处的切线斜率为f′(0)=3+t,
由题意可得,3+t=4,解得,t=1;      
                                       
(Ⅱ) f′(x)=(x3-3x2-9x+3+t)ex
令g(x)=x3-3x2-9x+3+t,则方程g(x)=0有三个不同的根,
又g′(x)=3x2-6x-9=3(x2-2x-3)=3(x+1)(x-3)
令g′(x)=0得x=-1或3 
且g(x)在区间(-∞,-1),(3,+∞)递增,在区间(-1,3)递减,
故问题等价于
g(-1)>0
g(3)<0
即有
t+8>0
t-24<0
,解得,-8<t<24;        
                 
(Ⅲ)不等式f(x)≤x,即(x3-6x2+3x+t)ex≤x,即t≤xe-x-x3+6x2-3x.
转化为存在实数t∈[0,2],使对任意的x∈[1,m],
不等式t≤xe-x-x3+6x2-3x恒成立.
即不等式0≤xe-x-x3+6x2-3x在x∈[1,m]上恒成立.
即不等式0≤e-x-x2+6x-3在x∈[1,m]上恒成立.
设φ(x)=e-x-x2+6x-3,则φ'(x)=-e-x-2x+6.
设r(x)=φ'(x)=-e-x-2x+6,则r'(x)=e-x-2,因为1≤x≤m,有r'(x)<0.
故r(x)在区间[1,m]上是减函数.
又r(1)=4-e-1>0,r(2)=2-e-2>0,r(3)=-e-3<0
故存在x0∈(2,3),使得r(x0)=φ'(x0)=0.
当1≤x<x0时,有φ'(x)>0,当x>x0时,有φ'(x)<0.
从而y=φ(x)在区间[1,x0]上递增,在区间[x0,+∞)上递减.
又φ(1)=e-1+4>0,φ(2)=e-2+5>0,φ(3)=e-3+6>0,φ(4)=e-4+5>0,
φ(5)=e-5+2>0,φ(6)=e-6-3<0.
所以当1≤x≤5时,恒有φ(x)>0;
当x≥6时,恒有φ(x)<0;
故使命题成立的正整数m的最大值为5.
点评:本题考查利用导数求切线方程、函数的极值、极值点是导函数的根、解决不等式恒成立常用的方法是构造函数利用导数求函数的最值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网