题目内容
3.已知一个圆锥内接于球O(圆锥的底面圆周及顶点均在球面上),若球的半径R=5,圆锥的高是底面半径的2倍,则圆锥的体积为$\frac{128π}{3}$.分析 设圆锥的底面半径为r,用r表示出由球心O,圆锥底面中心O′和圆锥底面圆周上一点组成的直角三角形的三边,使用勾股定理列方程解出r.
解答 解:
设圆锥的底面半径O′B=r,则SO′=2r,
∵球的半径为OS=OB=5,
∴OO′=2r-5,
由勾股定理得:(2r-5)2+r2=25,
解得r=4.
∴圆锥的高为8,
∴圆锥的体积V=$\frac{1}{3}π×{4}^{2}×8$=$\frac{128π}{3}$.
故答案为$\frac{128π}{3}$.
点评 本题考查了圆锥的结构特征,圆锥与外接球的关系,属于中档题.
练习册系列答案
相关题目
11.命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ.”该过程应用了( )
| A. | 分析法 | B. | 综合法 | C. | 间接证明法 | D. | 反证法 |
18.等差数列{an}中,a4+a7+a9+a12=32,则能求出值的是( )
| A. | S12 | B. | S13 | C. | S15 | D. | S14 |
15.某位同学为了研究气温对饮料销售的影响,经过对某小卖部的统计,得到一个卖出的某种饮料杯数与当天气温的对比表.他分别记录了3月21日至3月25日的白天平均气温x(℃)与该小卖部的这种饮料销量y(杯),得到如下数据
(1)若先从这五组数据中任取2组,求取出的2组数据恰好是相邻2天数据的概率;
(2)请根据所给五组数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(3)根据(2)中所得的线性回归方程,若天气预报3月26日的白天平均气温7(℃),请预测小卖部的这种饮料的销量.(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
| 日 期 | 3月21日 | 3月22日 | 3月23日 | 3月24日 | 3月25日 |
| 平均气温x(°C) | 8 | 10 | 14 | 11 | 12 |
| 销量y(杯) | 21 | 25 | 35 | 26 | 28 |
(2)请根据所给五组数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(3)根据(2)中所得的线性回归方程,若天气预报3月26日的白天平均气温7(℃),请预测小卖部的这种饮料的销量.(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
12.下面表示同一集合的是( )
| A. | M={(1,2)},N={(2,1)} | B. | M={1,2},N={(2,1)} | ||
| C. | M=∅,N={∅} | D. | M={x︳x2-3x+2=0},N={1,2} |
13.已知cos(2π-α)=$\frac{3}{4}$,α∈(-$\frac{π}{2}$,0),则sin2α的值为( )
| A. | $\frac{3}{8}$ | B. | $-\frac{3}{8}$ | C. | $\frac{{3\sqrt{7}}}{8}$ | D. | -$\frac{{3\sqrt{7}}}{8}$ |