题目内容
14.若△ABC是边长为1的等边三角形,且$\overrightarrow{AD}$=2$\overrightarrow{DB}$,2$\overrightarrow{AE}$=$\overrightarrow{EC}$,则$\overrightarrow{CD}$$•\overrightarrow{BE}$=( )| A. | -$\frac{1}{9}$ | B. | -$\frac{2}{9}$ | C. | -$\frac{1}{3}$ | D. | -$\frac{7}{18}$ |
分析 △ABC是边长为1的等边三角形,且$\overrightarrow{AD}$=2$\overrightarrow{DB}$,2$\overrightarrow{AE}$=$\overrightarrow{EC}$,则D,E分别为AB,AC的三等分点;再利用向量的线性运算与数量积公式即可;
解答 解:△ABC是边长为1的等边三角形,且$\overrightarrow{AD}$=2$\overrightarrow{DB}$,2$\overrightarrow{AE}$=$\overrightarrow{EC}$,
则D,E分别为AB,AC的三等分点,
则$\overrightarrow{CD}$$•\overrightarrow{BE}$=($\overrightarrow{AD}$-$\overrightarrow{AC}$)•($\overrightarrow{AE}$-$\overrightarrow{AB}$)
=$\overrightarrow{AC}$•$\overrightarrow{AB}$-$\overrightarrow{AC}•\overrightarrow{AE}$-$\overrightarrow{AD}$•$\overrightarrow{AB}$+$\overrightarrow{AD}$•$\overrightarrow{AE}$
=1×1×$\frac{1}{2}$-1×$\frac{1}{3}$×1-1×$\frac{2}{3}$×1+$\frac{2}{3}$×$\frac{1}{3}$×$\frac{1}{2}$=-$\frac{7}{18}$;
故选:D.
点评 本题主要考查了平面向量的数量的运算,向量线性运算,以及对向量定义的理解,属中等题.
| A. | 2n+1 | B. | 2n-3 | C. | 2n-1 | D. | 2n |
| A. | [-12,14] | B. | [-52,14] | C. | (-∞,-12]∪[14,+∞) | D. | (-∞,-52]∪[14,+∞) |
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |