题目内容
19.设复数z=1+$\frac{2}{i}$(其中i为虚数单位,$\overline{z}$为z的共轭复数),则z2+3$\overline{z}$的虚部为2.分析 利用复数代数形式的乘除运算化简求得z,进一步得到$\overline{z}$,代入z2+3$\overline{z}$化简得答案.
解答 解:z=1+$\frac{2}{i}$=$1+\frac{-2i}{-{i}^{2}}=1-2i$,
∴$\overline{z}=1+2i$,
则z2+3$\overline{z}$=(1-2i)2+3(1+2i)=1-4i+4i2+3+6i=2i.
∴z2+3$\overline{z}$的虚部为2.
故答案为:2.
点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
练习册系列答案
相关题目
10.已知△ABC的三个内角A,B,C满足2017cos2C-cos2A=2016-2sin2B,则$\frac{tanC•(tanA+tanB)}{tanA•tanB}$=( )
| A. | $\frac{2017}{2}$ | B. | $\frac{2}{2017}$ | C. | $\frac{1}{2016}$ | D. | $\frac{1}{1008}$ |
7.将参数方程$\left\{\begin{array}{l}x=2+sin2θ\\ y=sin2θ\end{array}$(θ为参数)化为普通方程是( )
| A. | y=x-2 | B. | y=x+2 | C. | y=x-2(1≤x≤3) | D. | y=x+2(0≤y≤1) |
14.圆心在x轴上,半径长为 $\sqrt{2}$,且过点(-2,1)的圆的方程为( )
| A. | (x+1)2+y2=2 | B. | x2+(y+2)2=2 | ||
| C. | (x+3)2+y2=2 | D. | (x+1)2+y2=2或(x+3)2+y2=2 |
11.已知随机变量X~N(3,σ2),若P(X<a)=0.4,则P(a≤X<6-a)的值为( )
| A. | 0.4 | B. | 0.2 | C. | 0.1 | D. | 0.6 |