题目内容
7.已知函数$y=\sqrt{3}sin2x-cos2x$.(Ⅰ)求$f(\frac{π}{4})$的值;
(Ⅱ)求f (x)的单调递增区间;
(Ⅲ)当$x∈[\frac{π}{4},\frac{5π}{12}]$时,求f (x)的值域.
分析 (Ⅰ)代值计算可得;
(Ⅱ)由三角函数公式化简可得y=2sin(2x-$\frac{π}{6}$),解$2kπ-\frac{π}{2}≤2x-\frac{π}{6}≤2kπ+\frac{π}{2},k∈Z$可得;
(Ⅲ)由$\frac{π}{4}≤x≤\frac{5π}{12}$可得$\frac{π}{3}≤2x-\frac{π}{6}≤\frac{2π}{3}$,可得$\frac{{\sqrt{3}}}{2}≤sin(2x-\frac{π}{6})≤1$,由不等式的性质可得函数的值域.
解答 解:(Ⅰ)∵f(x)=$\sqrt{3}$sin2x-cos2x,∴$f(\frac{π}{4})$=$\sqrt{3}$;
(Ⅱ)$y=\sqrt{3}sin2x-cos2x=2(\frac{{\sqrt{3}}}{2}sin2x-\frac{1}{2}cos2x)$
=$2(sin2xcos\frac{π}{6}-cos2xsin\frac{π}{6})=2sin(2x-\frac{π}{6})$
当$2kπ-\frac{π}{2}≤2x-\frac{π}{6}≤2kπ+\frac{π}{2},k∈Z$时,函数单调递增,
解得函数的单调增区间为$[kπ-\frac{π}{6},kπ+\frac{π}{3}](k∈Z)$;
(Ⅲ)∵$\frac{π}{4}≤x≤\frac{5π}{12}$,∴$\frac{π}{3}≤2x-\frac{π}{6}≤\frac{2π}{3}$,
又$sin\frac{π}{3}=sin\frac{2π}{3}=\frac{{\sqrt{3}}}{2}$,∴$\frac{{\sqrt{3}}}{2}≤sin(2x-\frac{π}{6})≤1$,
∴$\sqrt{3}≤2sin(2x-\frac{π}{6})≤2$,故函数的值域为[$\sqrt{3}$,2]
点评 本题考查三角函数恒等变换,涉及三角函数的单调性和值域,属基础题.
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
| A. | 36π | B. | 72π | C. | 144π | D. | 288π |
| A. | y=x+ex | B. | $y=x+\frac{1}{x}$ | C. | $y={2^x}+\frac{1}{2^x}$ | D. | $y=\sqrt{1+{x^2}}$ |