题目内容

19.(1)已知f(x+1)=x2-3x+2,求f(x)的解析式.
(2)二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1,求f(x)的解析式.

分析 (1)根据换元法求出函数的解析式即可;
(2)要求二次函数的解析式,利用直接设解析式的方法,一定要注意二次项系数不等于零,在解答的过程中使用系数的对应关系,解方程组求的结果.

解答 解:(1)令x+1=t,则x=t-1,
∴f(t)=(t-1)2-3(t-1)+2=t2-5t+6,
故f(x)=x2-5x+6;
(2)设二次函数的解析式为f(x)=ax2+bx+c (a≠0)
由f(0)=1得c=1,
故f(x)=ax2+bx+1.
因为f(x+1)-f(x)=2x,
所以a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x.
即2ax+a+b=2x,
根据系数对应相等 $\left\{\begin{array}{l}{2a=2}\\{a+b=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{a=1}\\{b=-1}\end{array}\right.$,
所以f(x)=x2-x+1.

点评 本题考查了求函数的解析式问题换元法和待定系数法是常用方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网