题目内容
7.一个直棱柱的对角线长是9cm和15cm,高是5cm,若它的底面是菱形,则这个直棱柱的侧面积是( )| A. | 160 cm2 | B. | 320 cm2 | C. | 40$\sqrt{89}$cm2 | D. | 80$\sqrt{89}$cm2 |
分析 由菱形的对角线的长分别是9和15,先求出菱形的边长,再由底面是菱形的直棱柱的侧棱长为5,能求出这个棱柱的侧面积.
解答 解:∵菱形的对角线的长分别是9和15,
∴菱形的边长为:$\sqrt{(\frac{\sqrt{{9}^{2}-{5}^{2}}}{2})^{2}+(\frac{\sqrt{1{5}^{2}-{5}^{2}}}{2})^{2}}$=$\sqrt{\frac{81-25+225-25}{4}}$=8,
∵底面是菱形的直棱柱的侧棱长为5,
∴这个棱柱的侧面积S=4×8×5=160.
故选:A.
点评 本题考查棱柱的侧面积的求法,是基础题,解题时要认真审题,注意菱形的性质的合理运用.
练习册系列答案
相关题目
12.已知tan(π-α)=-$\frac{2}{3}$,且α∈(-π,-$\frac{π}{2}}$),则$\frac{{cos({-α})+3sin({π+α})}}{{cos({π-α})+9sinα}}$的值为( )
| A. | $-\frac{1}{5}$ | B. | $-\frac{3}{7}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{7}$ |
16.已知定义在R上的函数f(x)=x2+2ax+3在(-∞,1]上是减函数,当x∈[a+1,1]时,f(x)的最大值与最小值之差为g(a),则g(a)的最小值为( )
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |