题目内容

已知向量
m
=(2sinx,2cosx),
n
=(
3
cosx,cosx),f(x)=
m
n
-1

(1)求函数f(x)的最小正周期和单调递增区间;
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标先缩短到原来的
1
2
,把所得到的图象再向左平移
π
6
单位,得到函数y=g(x)的图象,求函数y=g(x)在区间[0,
π
8
]
上的最小值.
分析:(1)利用向量的坐标运算可求得f(x)=
m
n
-1=2sin(2x+
π
6
),从而可求函数f(x)的最小正周期和单调递增区间;
(2)利用三角函数y=Asin(ωx+φ)的图象变换可得y=g(x)的表达式,从而可求得在区间[0,
π
8
]
上的最小值.
解答:解:(1)依题意得,f(x)=
m
n
-1
=
3
sin2x+cos2x+1-1
=2sin(2x+
π
6
),
∴函数f(x)的最小正周期T=
2
=π,
由2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
(k∈Z)得:,
kπ-
π
3
≤x≤kπ+
π
6
(k∈Z)
∴f(x)的单调递增区间为[kπ-
π
3
,kπ+
π
6
](k∈Z);
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标先缩短到原来的
1
2
,可得y=2sin(x+
π
6
),把所得到的y=2sin(x+
π
6
)的图象再向左平移
π
6
单位,
即得g(x)=2sin[(x+
π
6
)+
π
6
]=2sin(x+
π
3
);又0≤x≤
π
8

π
3
≤x+
π
3
11π
24

∴g(x)min=2sin
π
3
=
3
点评:本题考查函数y=Asin(ωx+φ)的图象变换,以向量的坐标运算为载体考查三角函数的化简求值,考查正弦函数的性质,是三角中的综合题,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网