ÌâÄ¿ÄÚÈÝ
16£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨sin¦Øx+cos¦Øx£¬$\sqrt{3}$cos¦Øx£©£¬$\overrightarrow{b}$=£¨cos¦Øx-sin¦Øx£¬2sin¦Øx£©£¨¦Ø£¾0£©£¬Èôº¯Êýf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$µÄÏàÁÚÁ½¶Ô³ÆÖá¼äµÄ¾àÀëµÈÓÚ$\frac{¦Ð}{2}$£®£¨¢ñ£©Ç󦨵ÄÖµ£»
£¨¢ò£©ÔÚ¡÷ABCÖУ¬a¡¢b¡¢c·Ö±ðÊǽÇA¡¢B¡¢CËù¶ÔµÄ±ß£¬ÇÒf£¨A£©=1£¬$a=\sqrt{3}$£¬b+c=3£®Çó¡÷ABCµÄÃæ»ý£®
·ÖÎö £¨¢ñ£©ÓÉÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄÔËËãºÍÈý½Çº¯ÊýºãµÈ±ä»»µÄÓ¦Óÿɵú¯Êý½âÎöʽΪf£¨x£©=$2sin£¨2¦Øx+\frac{¦Ð}{6}£©$£¬ÓÉÒÑÖªÀûÓÃÖÜÆÚ¹«Ê½¼´¿ÉÇ󦨵ÄÖµ£®
£¨¢ò£©ÓÉf£¨A£©=1¿ÉÇó$sin£¨2A+\frac{¦Ð}{6}£©=\frac{1}{2}$£¬½áºÏ·¶Î§$\frac{¦Ð}{6}£¼2A+\frac{¦Ð}{6}£¼\frac{13}{6}¦Ð$£¬¼´¿É½âµÃAµÄÖµ£¬ÓÉÓàÏÒ¶¨Àí¿ÉµÃb2+c2-bc=3£¬ÓÖb+c=3£¬ÁªÁ¢½âµÃ£ºb£¬cµÄÖµ£¬ÀûÓÃÈý½ÇÐÎÃæ»ý¹«Ê½¼´¿É¼ÆËãµÃ½â£®
½â´ð £¨±¾ÌâÂú·ÖΪ12·Ö£©
½â£º£¨¢ñ£©f£¨x£©=a•b=${cos^2}¦Øx-{sin^2}¦Øx+2\sqrt{3}cos¦Øx•sin¦Øx$=$cos2¦Øx+\sqrt{3}sin2¦Øx$=$2sin£¨2¦Øx+\frac{¦Ð}{6}£©$£¬¡£¨4·Ö£©
¡ß¦Ø£¾0£¬
¡à$º¯Êýf£¨x£©µÄÖÜÆÚT=\frac{2¦Ð}{2¦Ø}=\frac{¦Ð}{¦Ø}=¦Ð$£¬
¡à¦Ø=1¡£¨5·Ö£©
£¨¢ò£©¡ß$f£¨x£©=2sin£¨2x+\frac{¦Ð}{6}£©$£¬
ÓÖ¡ßf£¨A£©=1£¬
¡à$sin£¨2A+\frac{¦Ð}{6}£©=\frac{1}{2}$£¬¶ø$\frac{¦Ð}{6}£¼2A+\frac{¦Ð}{6}£¼\frac{13}{6}¦Ð$£¬
¡à$2A+\frac{¦Ð}{6}=\frac{5}{6}¦Ð$£¬
¡à$A=\frac{¦Ð}{3}$£¬¡£¨8·Ö£©
ÓÉÓàÏÒ¶¨ÀíÖª$cosA=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}$£¬
¡àb2+c2-bc=3£¬ÓÖb+c=3£¬ÁªÁ¢½âµÃ£º$\left\{\begin{array}{l}b=2\\ c=1\end{array}\right.»ò\left\{\begin{array}{l}b=1\\ c=2\end{array}\right.$£¬¡£¨10·Ö£©
¡à${S_{¡÷ABC}}=\frac{1}{2}bcsinA=\frac{{\sqrt{3}}}{2}$£¬¡£¨12·Ö£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄÔËËãºÍÈý½Çº¯ÊýºãµÈ±ä»»µÄÓ¦Óã¬ÖÜÆÚ¹«Ê½£¬ÓàÏÒ¶¨Àí£¬Èý½ÇÐÎÃæ»ý¹«Ê½ÒÔ¼°ÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖÊÔÚ½âÈý½ÇÐÎÖеÄ×ÛºÏÓ¦Ó㬿¼²éÁËת»¯Ë¼ÏëºÍÊýÐνáºÏ˼Ï룬ÊôÓÚÖеµÌ⣮
| A£® | £¨0£¬$\frac{2}{7}$£© | B£® | £¨$\frac{2}{7}$£¬$\frac{2}{3}$£© | C£® | £¨$\frac{2}{3}$£¬$\frac{4}{5}$£© | D£® | £¨$\frac{2}{7}$£¬$\frac{4}{5}$£© |
| A£® | $-\frac{{\sqrt{6}}}{2}$ | B£® | $-\frac{{\sqrt{3}}}{2}$ | C£® | $-\frac{{\sqrt{2}}}{2}$ | D£® | -1 |