题目内容
已知
=(2,cosx),
=(sin(x+
),-2),函数f(x)=
•
.
(1)求函数f(x)的单调增区间;
(2)若f(x)=
,求cos(2x-
)的值.
| a |
| b |
| π |
| 6 |
| a |
| b |
(1)求函数f(x)的单调增区间;
(2)若f(x)=
| 6 |
| 5 |
| π |
| 3 |
(1)∵f(x)=
•
=2sin(x+
)-2cosx=2sinxcos
+2cosxsin
-2cosx
=
sinx-cosx=2sin(x-
) …(5分)
由-
+2kπ≤x-
≤
+2kπ,k∈z,得,-
+2kπ≤x≤
+2kπ. …(7分)
故函数f(x)的单调增区间为[-
+2kπ ,
+2kπ],k∈z.…(8分)
(2)由(1)可得f(x)=
即 sin(x-
)=
.…(10分)
∴cos(2x-
)=1-2sin2(x-
)=
.…(12分)
| a |
| b |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
=
| 3 |
| π |
| 6 |
由-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| 2π |
| 3 |
故函数f(x)的单调增区间为[-
| π |
| 3 |
| 2π |
| 3 |
(2)由(1)可得f(x)=
| 6 |
| 5 |
| π |
| 6 |
| 3 |
| 5 |
∴cos(2x-
| π |
| 3 |
| π |
| 6 |
| 7 |
| 25 |
练习册系列答案
相关题目
已知A=
+
(k∈Z),则A的值构成的集合是( )
| sin(kπ+∂) |
| sin∂ |
| cos(kπ+∂) |
| cos∂ |
| A、{1,-1,2,-2} |
| B、{1,-1} |
| C、{1,-1,0,2,-2} |
| D、{2,-2} |