题目内容

10.设实数x,y满足$\frac{{x}^{2}}{4}-{y}^{2}=1$,则3x2-2xy的最小值是(  )
A.$6-4\sqrt{2}$B.$6+4\sqrt{2}$C.$4+6\sqrt{2}$D.$4-6\sqrt{2}$

分析 设出双曲线的参数方程,代入所求式,运用切割化弦,再由基本不等式即可得到所求最小值.

解答 解:由$\frac{{x}^{2}}{4}-{y}^{2}=1$,可设x=2secα,y=tanα,
则3x2-2xy=12sec2α-4secαtanα=$\frac{4}{1-sinα}$+$\frac{8}{1+sinα}$,
其中-1<sinα<1,
[(1-sinα)+(1+sinα)]($\frac{4}{1-sinα}$+$\frac{8}{1+sinα}$)
=12+$\frac{4(1+sinα)}{1-sinα}$+$\frac{8(1-sinα)}{1+sinα}$
≥12+8$\sqrt{2}$,
当且仅当$\frac{4(1+sinα)}{1-sinα}$=$\frac{8(1-sinα)}{1+sinα}$,
解得sinα=3-2$\sqrt{2}$(3+2$\sqrt{2}$舍去),取得最小值.
则3x2-2xy的最小值是6+4$\sqrt{2}$.
故选:B.

点评 本题考查最值的求法,注意运用双曲线的参数方程,考查三角函数的化简,以及基本不等式的运用:求最值,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网