题目内容

3.判断函数的奇偶性:
(1)f(x)=log3$\frac{x-2}{x+2}$
(2)f(x)=x($\frac{1}{{3}^{x}-1}$+$\frac{1}{2}$)

分析 (1)可得函数的定义域对称,由对数运算可得f(x)+f(-x)=0,可得奇函数;
(2)可得函数的定义域对称,由指数运算可得f(x)-f(-x)=0,可得偶函数.

解答 解:(1)由$\frac{x-2}{x+2}$>0可得x<-2或x>2,
∴函数的定义域为(-∞,-2∪(2,+∞)
∵f(x)=log3$\frac{x-2}{x+2}$,∴f(-x)=log3$\frac{x+2}{x-2}$,
∴f(x)+f(-x)=log3$\frac{x-2}{x+2}$+log3$\frac{x+2}{x-2}$=log3$\frac{x-2}{x+2}$•$\frac{x+2}{x-2}$=log31=0,
∴f(x)=-f(-x),函数f(x)为奇函数;
(2)函数的定义域为{x|x≠0},
∵f(x)=x($\frac{1}{{3}^{x}-1}$+$\frac{1}{2}$),∴f(-x)=-x($\frac{1}{{3}^{-x}-1}$+$\frac{1}{2}$)=-x($\frac{{3}^{x}}{1-{3}^{x}}$+$\frac{1}{2}$),
∴f(x)-f(-x)=x($\frac{1}{{3}^{x}-1}$+$\frac{1}{2}$)+x($\frac{{3}^{x}}{1-{3}^{x}}$+$\frac{1}{2}$)
=x($\frac{1}{{3}^{x}-1}$+$\frac{1}{2}$+$\frac{{3}^{x}}{1-{3}^{x}}$+$\frac{1}{2}$)=0,即f(x)=f(-x),
∴函数f(x)为偶函数.

点评 本题考查函数奇偶性的判定,涉及函数的定义域和奇偶性的定义,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网