题目内容

8.已知A、B是单位圆(O为圆心)上的两个定点,且∠AOB=30°,若C为该圆上的动点,且$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x,y∈R),则xy的最大值为2-$\sqrt{3}$.

分析 对$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$两边平方得出x,y的关系,利用不等式的性质求出xy的最大值.

解答 解:∵|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=1,$\overrightarrow{OA}•\overrightarrow{OB}$=1×1×cos30°=$\frac{\sqrt{3}}{2}$.
∵$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,∴x2+y2+$\sqrt{3}$xy=1,
即x2+y2=1-$\sqrt{3}$xy,又x2+y2≥2xy,
∴1-$\sqrt{3}$xy≥2xy,
∴xy≤$\frac{1}{2+\sqrt{3}}$=2-$\sqrt{3}$.
故答案为:2-$\sqrt{3}$.

点评 本题考查了平面向量的数量积运算,基本不等式的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网