题目内容
18.某校拟从高一年级、高二年级、高三年级学生中抽取一定比例的学生调查对“荆马”(荆门国际马拉松)的了解情况,则最合理的抽样方法是( )| A. | 抽签法 | B. | 系统抽样法 | C. | 分层抽样法 | D. | 随机数法 |
分析 若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.
解答 解:常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,
高一年级、高二年级、高三年级学生对“荆马”(荆门国际马拉松)的了解情况,存在显著差异,
这种方式具有代表性,比较合理的抽样方法是分层抽样.
故选:C.
点评 本题考查了分层抽样方法的特征与应用问题,是基本题.
练习册系列答案
相关题目
8.两圆x2+y2-4x+2y+1=0与x2+y2+4x-4y-1=0的位置关系是( )
| A. | 外离 | B. | 外切 | C. | 相交 | D. | 内切 |
10.为了研究某学科成绩是否与学生性别有关,采用分层抽样的方法,从高二年级抽取了30名男生和20名女生的该学科成绩,得到如图所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定80分以上为优分(含80分).

(Ⅰ)(i)请根据图示,将2×2列联表补充完整;
(ii)据列联表判断,能否在犯错误概率不超过10%的前提下认为“学科成绩与性别有关”?
(Ⅱ)将频率视作概率,从高二年级该学科成绩中任意抽取3名学生的成绩,求成绩为优分人数X的分布列与数学期望.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
参考数据:
(Ⅰ)(i)请根据图示,将2×2列联表补充完整;
| 优分 | 非优分 | 总计 | |
| 男生 | |||
| 女生 | |||
| 总计 | 50 |
(Ⅱ)将频率视作概率,从高二年级该学科成绩中任意抽取3名学生的成绩,求成绩为优分人数X的分布列与数学期望.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
参考数据:
| P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
7.tan$\frac{π}{4}$等于( )
| A. | -1 | B. | 1 | C. | -$\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
8.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁UA)∪B为( )
| A. | {1,2,4} | B. | {2,3,4} | C. | {0,2,4} | D. | {0,2,3,4} |