题目内容
18.已知数列{an}为等差数列,数列{bn}为等比数列,a1=1,b1=8,a2+b2=18,a3+b3=35,数列{an}的前n项和为Sn.(1)求数列{an}和{bn}的通项公式;
(2)数列{cn}满足cn=$\frac{{a}_{n+2}}{{b}_{n}{S}_{n}}$,求数列{cn}的前n项和Tn.
分析 (1)设数列{an}为公差d的等差数列,数列{bn}为公比q的等比数列,运用等差数列和等比数列的通项公式,解方程可得d=1,q=2,进而得到所求通项公式;
(2)求出cn=$\frac{{a}_{n+2}}{{b}_{n}{S}_{n}}$=$\frac{n+2}{{2}^{n+1}•n(n+1)}$=$\frac{1}{n•{2}^{n}}$-$\frac{1}{(n+1)•{2}^{n+1}}$,再由数列的求和方法:裂项相消求和,化简即可得到所求和.
解答 解:(1)设数列{an}为公差d的等差数列,数列{bn}为公比q的等比数列,
由a1=1,b1=8,a2+b2=18,a3+b3=35,
可得1+d+8q=18,1+2d+8q2=35,
解得d=1,q=2,
则an=1+n-1=n,bn=8•2n-1=2n+2(n∈N*);
(2)cn=$\frac{{a}_{n+2}}{{b}_{n}{S}_{n}}$=$\frac{n+2}{{2}^{n+2}•\frac{1}{2}n(n+1)}$=$\frac{n+2}{{2}^{n+1}•n(n+1)}$=$\frac{1}{n•{2}^{n}}$-$\frac{1}{(n+1)•{2}^{n+1}}$,
则前n项和Tn=$\frac{1}{1•2}$-$\frac{1}{2•{2}^{2}}$+$\frac{1}{2•{2}^{2}}$-$\frac{1}{3•{2}^{3}}$+…+$\frac{1}{n•{2}^{n}}$-$\frac{1}{(n+1)•{2}^{n+1}}$
=$\frac{1}{2}$-$\frac{1}{(n+1)•{2}^{n+1}}$.
点评 本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的求和方法:裂项相消求和,以及化简整理的运算能力,属于中档题.
| 编号 | 1 | 2 | 3 | 4 | 5 |
| x | 169 | 178 | 166 | 175 | 180 |
| y | 75 | 80 | 77 | 70 | 81 |
(2)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量;
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及方差.
| A. | -$\frac{{3}^{9}}{{2}^{10}}$ | B. | -$\frac{{3}^{10}}{{2}^{10}}$ | C. | $\frac{{3}^{9}}{{2}^{10}}$ | D. | $\frac{{3}^{10}}{{2}^{10}}$ |